DOI QR코드

DOI QR Code

Characterization of Controlled Low Strength Materials Utilizing CO2-fixation Steel Slag and Power Plant Bottom Ash

CO2고정화한 제강슬래그와 발전소 바닥재를 활용한 저강도 고유동 채움재의 특성

  • 조용광 (한일시멘트 단양공장) ;
  • 김춘식 (한일시멘트 단양공장) ;
  • 남성영 (한일시멘트 단양공장) ;
  • 조성현 (한일시멘트 단양공장) ;
  • 이형우 (한일시멘트 단양공장) ;
  • 안지환 (한국지질자원연구원 탄소광물화사업단)
  • Received : 2018.05.11
  • Accepted : 2018.05.30
  • Published : 2018.06.30

Abstract

In this study investigated the Controlled Low Strength Materials using coal ash and steel slag(KR slag) as the main material in the thermal power plant classified as waste resource. Bottom ash and KR slag are mixed at a ratio of 7: 3 to expand the use of industrial by-products through carbonate($CO_2$-fixation) reactions and inhibit the exudation of heavy metals. The results showed that the water content increased as the content of bottom ash increased. It was confirmed that as the powder content increased, the bleeding ratio decreased. Also, as the content of one kind of ordinary portland cement (OPC) decreased, activation of hydration reaction decreased and compressive strength decreased. However, when the mixed composition is appropriately adjusted, the compressive strength of 2.0 MPa required for the controlled low-strength material can be satisfied.

폐자원으로 분류되는 화력발전소의 석탄재와 제강슬래그(KR슬래그)를 주 재료로 활용하여 저강도 고유동채움재를 제조하였다. 산업부산물의 활용방안을 확대하고 중금속 용출 억제 등의 환경적 안정성을 확보하기 위해 화력발전소 바닥재(bottom ash)와 KR슬래그는 7:3으로 혼합하여 탄산화반응($CO_2$고정화)을 실시하였다. 연구결과 석탄바닥재의 기공이 많아 $CO_2$고정화 물질 함량이 증가할수록 물비율이 증가하였다. 배합 중 분체함량이 증가할수록 블리딩율이 저하되는 것을 확인하였다. 1종 보통 포틀랜드 시멘트(OPC)함량이 감소할수록 수화반응의 활성화가 저하되어 압축강도는 감소하였다. 하지만 배합 조성을 적절히 조절할 경우 저강도 고유동 채움재가 요구되는 2.0MPa의 압축강도는 충족시킬 수 있는 결과를 확보하였다.

Keywords

References

  1. Kang.B., Lee, Y.W., Ryu, C.K.,Yang.W., 2017, Applicability of Various Biomasses to Pulverized Coal Power Plants in Terms of their Grindability, Chean Technol, Vol. 23(1), pp.73-79.
  2. Jang J.G., Ji, S.W.,Ahn, J.W., 2017, Utilization of Circulating Fluidzed Bed Combustion Ash and Related Specifications for Mine Backfills, J. of Korean Inst. of Resources Recycling, Vol. 26(2), pp. 71-79. https://doi.org/10.7844/kirr.2017.26.2.71
  3. Lim, S. Y., et al.,2016, The characterization of Controlled Low Strength Material(CLSM) using high CaO fly ash without chemical alkaline activator, J. of the Korean Geo-Environmental Soc., Vol. 17, pp. 17-26.
  4. Lee, JY., Choi, HY., Yang, JE, 2010, Physicochemical Effects of Bottom Ash on the Turfgrass Growth Media of Sandy Topsoil in Golf Course, Kor. Turfgrass Sci, Vol, 24(2) pp. 199-204.
  5. K.S. Doh, et al., 1988 "A Study on the Resources Potential of Industrial Waste in Korea' J. korea Solid Wastes Engin. Soc. Vol. 5 (2) pp.145-156.
  6. Sreenivasarao K, Warren GW, Mckinley MD, 1997, Hydrometallurgical G. Treatment of municipal solid waste fly-ash for simultaneous detoxification and metal recovery. Journal of Environmental Science and Health. Vol. 32(4) pp.1225-1245.
  7. Lee, B. K., Kim, G. Y., Koo, K. M., Shin, K. S., 2014, Properties of Compressive Strength of Mortar Based on High-activated Blast Furnace Slag using the Slag by-product as an Activator, Journal of the Korea Institute of Building Construction, Vol. 14, pp.37-44. https://doi.org/10.5345/JKIBC.2014.14.1.037
  8. kim, K. D., Kang, S.G., 2007, Manufacturing artificial lightweight aggregates using coal bottom ash and clay" Journal of the Korean Crystal Growth and Crystal Technology, Vol. 17(6) pp. 277-282.
  9. Kwon, C. W., Lim, N. G., 2013, Fundamental Properties of Low Strength Concrete Mixture with Blast Furnace Slag and Sewage Sludge, Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 17(3) pp. 136-144. https://doi.org/10.11112/jksmi.2013.17.3.136
  10. Lin, K. L., Wang, K. S., Lin, C. H., 2004, The hydration of pastes containing municipal solid waste incinerator fly ash slag, Journal of Hazardous Materials, Vol. 109, pp. 173-181. https://doi.org/10.1016/j.jhazmat.2004.03.014