• Title/Summary/Keyword: Hybrid vehicles

Search Result 471, Processing Time 0.022 seconds

A Study on the Control Algorithm for Engine Clutch Engagement During Mode Change of Plug-in Hybrid Electric Vehicles (플러그인 하이브리드 차량의 모드변환에 따른 엔진클러치 접합 제어알고리즘 연구)

  • Sim, Kyuhyun;Lee, Suji;Namkoong, Choul;Lee, Ji-Suk;Han, Kwan-Soo;Hwang, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.801-805
    • /
    • 2016
  • In this paper, engine clutch engagement shock is analyzed during the mode change of plug-in hybrid electric vehicles. Multi-driving mode includes the EV (electric vehicle) mode, HEV (hybrid electric vehicle) mode, and engine operating mode. Depending on the mode change, the engine clutch is either engaged or disengaged. The magnitude of shock during clutch engagement is very important because it impacts vehicle acceleration and clutch synchronization speed, which affects ride comfort substantially. The performance simulator of plug-in hybrid electric vehicles was developed using MATLAB/Simulink. The simulation results show that the mode change control algorithm is necessary for minimizing shock during clutch engagement.

A Novel Stator Hybrid Excited Doubly Salient Permanent Magnet Brushless Machine for Electric Vehicles

  • Zhu Xiaoyong;Cheng Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.185-191
    • /
    • 2006
  • In this paper, a novel stator hybrid excited doubly salient permanent magnet (SHEDS-PM) brushless machine with a special magnetic bridge is proposed for the first time. The originality of this machine is purposely to add a magnetic bridge in shunt with each PM pole, which not only maintains the stator lamination in its entireness, but also amplifies the effect of DC field flux on PM flux. An equivalent magnetic circuit is presented to clarify the novelty. Based on the 2-D finite element analysis, the static characteristics of the SHEDS-PM machine, namely phase flux linkage, back-EMF, cogging torque, winding inductance and static torque are deduced. The corresponding results on a prototype machine illustrate that the proposed machine is promising for application to electric vehicles.

Characteristics of Lightweight Hydraulic Directional Control Valve for Emergency Steering in Hybrid Electric Commercial Vehicles (하이브리드 상용차용 경량 비상조향장치 유압방향제어밸브의 성능특성 연구)

  • Park, Kyungmin
    • Tribology and Lubricants
    • /
    • v.29 no.5
    • /
    • pp.291-297
    • /
    • 2013
  • Hydraulic directional control valves actuated by solenoid are used to control emergency steering in general or hybrid electric commercial vehicles. In this study, a new lightweight hydraulic directional control valve was designed by flow and structural simulation, and was fabricated; the basic operation, pressure differentials, and inner leakage flow were evaluated experimentally. In the results, the new model showed comparable performance with an existing imported valve. New valve was 80% the weight of the existing valve and had few components. Installing this valve on a truck body is easier because of its compactness and small size.

Thermoelectric Power Generation System with Loop Thermosyphon (루프형 열사이폰을 이용한 열전발전 시스템)

  • Kim, Sun-Kook;Rhi, Seok-Ho;Won, Byung-Chul;Kim, Dae-Hyun;Lee, Chung-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.718-721
    • /
    • 2009
  • A new progressive advanced approach (Loop thermosyphon Thermoelectric Power generation System) is suggested to optimize heat recovery ability from vehicle exhaust gas. As an initial look at device feasibility, the present new TE system adopted the loop thermosyphon as a cooling heat exchanger. The TE system with loop thermosyphon was investigated in terms of working fluids, instability of system, amount of working fluid, and so on. Basically, the present experimental works have been focused on finding the optimum working condition of the system to improve thermoelectric power output and to obtain stable power generation to operate hybrid vehicles. The present experimental results with the loop thermosyphon TE module shows possibilities as an improved TE system for future thermoelectric hybrid vehicles.

STUDY ON IMPROVEMENT OF POWER TRAIN MECHANISM FOR HYBRID ELECTRIC (하이브리드 전기 자동차의 동력전달 메커니즘 개선에 관한 연구)

  • Choi, Chang-Won;Chun, Soon-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1275-1277
    • /
    • 2001
  • Growing environmental and economic concerns have lead to recent efforts to produce more fuel efficient and lower emissions vehicles. Hybrid Electric Vehicles(ab. HEVs) are the most promising designs to reach these goals. In this paper, We present an of a Power Tra the Hybrid Electric Vehicle(at. PTHEV). We int a different concept of PTHEV than in the pr research of PTHEV. This PTHEV includes benefits of serial(Minimum emission and Max efficiency) and parallel(Maximum Power efficiency by direct drive engine) PTHEV. Also mechanism can avoid driving the engine in the speed regions.

  • PDF

A study on stress analysis of aluminium wire in hybrid IC using far vehicles (A force analysis acting on aluminium wire) (자동차용 하이브리드 IC에 사용되는 알미늄선의 응력해석에 관한 연구 (제1보 알미늄선에 작용하는 하중 분석))

  • 임석현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.23-27
    • /
    • 1999
  • A lot of electronic parts are used for recent vehicles. If electronic parts break down, it will bring passenger to fatal wound. The very representative trouble of electronic parts is a cut aluminium wire of a hybrid IC. In this study, I analyzed a cause of cut aluminium wire and the main results obtained on this study are summarized as follows; (1) The forces acting on the aluminium wire are because of thermal expansion of a resin. (2) The forces acting on the aluminium wire are obtained by the theoretical analysis and those results are agree well with those of the FEM.

  • PDF

Comparative Study on Power Control Strategies for Fuel Cell Hybrid Electric Vehicles (연료전지 하이브리드 자동차에 대한 에너지 운용전략의 비교 연구)

  • Ki, Young-Hun;Jeong, Gu-Min;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.198-200
    • /
    • 2006
  • In this paper, three types of power control strategies for controlling a Fuel Cell Hybrid Electric Vehicle(FCHEV) are studied in view of fuel economy. The FCHEV has become one of alternatives for future vehicles since it does emit water only without any exhaust gas while it has a high well-to-wheel efficiency together with an energy saving due to regenerative braking. However, it has also several disadvantages such as the complexity of vehicle system, the increased weight and the extra battery cost. Among various power control strategies, a static power control strategy, a power assist control strategy and a fuzzy logic-based power control strategy are simulated and compared to show the effectiveness of each method.

  • PDF

Development of the Battery ECU for Hybrid Electric Vehicle (하이브리드 전기자동차용 배터리 ECU 개발)

  • Nam J.H.;Choi J.H.;Kim S.J.;Kim J.W.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.740-744
    • /
    • 2003
  • The development of electric vehicle has been accelerated by the recent 'California Initiative' which has required increasing proportions of new vehicle in Los Angeles area to be ZEV(Zero Emission Vehicles) But, because skill of battery is feeble, ZEV regulation was postponed but that is by CO2 restriction and environmental pollution problem the latest because do development require. In the electric vehicle and hybrid electric vehicle, the battery ECU(Battery Management System, BMS) is very important and an essential equipment. The accurate state of charge(SOC) is required for the battery for hybrid electric vehicles. This paper proposes SOC algorithm for the HEV based on the terminal voltage. Also, designed and analyzed battery ECU to apply on HEV.

  • PDF

Simulator for Monitoring the Operations of Range Extender Electric Vehicles

  • Chun, Tae-Won;Tran, Quang-Vinh;Lee, Hong-Hee;Kim, Heung-Geun;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.424-429
    • /
    • 2011
  • In this paper, the simulator of an on-line monitoring system for the range extender electric vehicle has been developed. The messages from the four control modules, the air pressure and fuel level sensors data, and the on/off switching states of 31 indicator lamps can be received through the control area network (CAN), and displayed on the graphic panel. The simulator was designed using the four DSP boards, variable resistors, and toggle switches instead of the four control modules, sensors, and switching state of indicator lamps on an actual series hybrid electric vehicle (SHEV) bus, respectively. The performance of the monitoring technologies was verified with the simulator at the laboratory, and then it was tested on an actual SHEV bus. The simulator is very useful at the initial development of the monitoring system at the hybrid-type or electrical vehicles.

Computer Simulation: A Hybrid Model for Traffic Signal Optimisation

  • Jbira, Mohamed Kamal;Ahmed, Munir
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2011
  • With the increasing number of vehicles in use in our daily life and the rise of traffic congestion problems, many methods and models have been developed for real time optimisation of traffic lights. Nevertheless, most methods which consider real time physical queue sizes of vehicles waiting for green lights overestimate the optimal cycle length for such real traffic control. This paper deals with the development of a generic hybrid model describing both physical traffic flows and control of signalised intersections. The firing times assigned to the transitions of the control part are considered dynamic and are calculated by a simplified optimisation method. This method is based on splitting green times proportionally to the predicted queue sizes through input links for each new cycle time. The proposed model can be easily translated into a control code for implementation in a real time control system.