• 제목/요약/키워드: Hybrid switches

검색결과 63건 처리시간 0.034초

상용자석을 사용한 단상 하이브리드 SRM의 설계 및 구동 특성 (Design and Drive Performance of Single-phase Hybrid SRM with Commercial Ferrite Permanent Magnets)

  • 안진우;허재훈
    • 전기학회논문지
    • /
    • 제62권2호
    • /
    • pp.184-189
    • /
    • 2013
  • Compared to a multiphase SRM, a single-phase SRM has some advantages, such as lower number of switches and power converter size, which leads to gradually increasing in the household appliances and industrial applications. But the torque dead zone is existed in the single-phase SRM which decreases the starting capability of the motor and increases the torque ripple. In order to solve the aforementioned problems, a single-phase hybrid SRM with commercial ferrite permanent magnet is proposed in this paper. Basic design principle for the proposed structure is described. To verify the proposed structure, FEM is employed to get the characteristics of the proposed structure. Based on the analysis, a prototype is designed and manufactured. And, the experimental system is also constructed. The validity of the proposed structure is verified by the experimental results.

Analysis of Hybrid Converter with Wide Voltage Range Operation

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1099-1107
    • /
    • 2019
  • A soft switching converter with wide voltage range operation is investigated in this paper. A series resonant converter is implemented to achieve a high circuit efficiency with soft switching characteristics on power switches and rectifier diodes. To improve the weakness of the narrow voltage range in LLC converters, an alternating current (ac) power switch is used on the primary side to select a half-bridge or full-bridge resonant circuit to implement 4:1 voltage range operation. On the secondary-side, another ac power switch is adopted to select a full-wave rectifier or voltage-doubler rectifier to achiever an additional 2:1 output voltage range. Therefore, the proposed resonant converter has the capacity for 8:1 (320V~40V) wide output voltage operation. A single-stage hybrid resonant converter is employed in the study circuit instead of a two-stage dc converter to achiever wide voltage range operation. As a result, the study converter has better converter efficiency. The theoretical analysis and circuit characteristics are verified by experiments with a prototype circuit.

Hybrid Noc 시스템을 위한 재구성 가능한 스위치 설계 (Design of a Dynamically Reconfigurable Switch for Hybrid Network-on-Chip Systems)

  • 이동열;황선영
    • 한국통신학회논문지
    • /
    • 제34권8B호
    • /
    • pp.812-821
    • /
    • 2009
  • 본 논문은 다양한 멀티미디어 어플리케이션을 수행하는 hybrid NoC 시스템을 위한 새로운 동적 재구성 가능한 스위치를 제안한다. 기존의 고정된 스위치와 job 분배 알고리듬을 사용하는 hybrid NoC 구조는 효과적인 동작을 위하여 해당 NoC 시스템에서 수행될 어플리케이션을 정확히 예측해야 한다. 본 논문은 NoC 시스템에서 수행되는 다양한 멀티미디어 어플리케이션에 대하여 버퍼 오버플로우를 최소화할 수 있는 재구성 가능한 스위치 구조를 제안한다. 제안된 시스템의 검증을 위하여 임베디드 시스템에서 사용되는 다양한 멀티미디어 어플리케이션 중 MPEG4 동영상 재생, MP3재생, GPS 위치 계산, OFDM 복조를 대상으로 실험하였다. 버퍼 오버플로우는 단일구조의 서브 클러스터로 mesh 토폴로지와 star 토폴로지를 갖는 NoC와 비교하여 각각 평균 41.8%와 29.0%의 감소를 보인다. 전력 소모에서는 고정된 스위치를 사용한 hybrid NoC 구조와 비교하여 평균 2.3%의 증가를 보인다. 면적에서는 서브 클러스터의 구조에 따라 -0.6% ${\sim}$ 5.7% 의 증가를 보인다.

A Bidirectional Three-level DC-DC Converter with a Wide Voltage Conversion Range for Hybrid Energy Source Electric Vehicles

  • Wang, Ping;Zhao, Chendong;Zhang, Yun;Li, Jing;Gao, Yongping
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.334-345
    • /
    • 2017
  • In order to meet the increasing needs of the hybrid energy source system for electric vehicles, which demand bidirectional power flow capability with a wide-voltage-conversion range, a bidirectional three-level DC-DC converter and some control strategies for hybrid energy source electric vehicles are proposed. The proposed topology is synthesized from Buck and Boost three-level DC-DC topologies with a high voltage-gain and non-extreme duty cycles, and the bidirectional operation principle is analyzed. In addition, the inductor current ripple can be effectively reduced within the permitted duty cycle range by the coordinated control between the current fluctuation reduction and the non-extreme duty cycles. Furthermore, benefitting from duty cycle disturbance control, series-connected capacitor voltages can also be well balanced, even with the discrepant rise and fall time of power switches and the somewhat unequal capacitances of series-connected capacitors. Finally, experiment results of the bidirectional operations are given to verify the validity and feasibility of the proposed converter and control strategies. It is shown to be suitable for hybrid energy source electric vehicles.

Experimental Validation of a Cascaded Single Phase H-Bridge Inverter with a Simplified Switching Algorithm

  • Mylsamy, Kaliamoorthy;Vairamani, Rajasekaran;Irudayaraj, Gerald Christopher Raj;Lawrence, Hubert Tony Raj
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.507-518
    • /
    • 2014
  • This paper presents a new cascaded asymmetrical single phase multilevel converter with a lower number of power semiconductor switches and isolated DC sources. Therefore, the number of power electronic devices, converter losses, size, and cost are reduced. The proposed multilevel converter topology consists of two H-bridges connected in cascaded configuration. One H-bridge operates at a high frequency (high frequency inverter) and is capable of developing a two level output while the other H-bridge operates at the fundamental frequency (low frequency inverter) and is capable of developing a multilevel output. The addition of each power electronic switch to the low frequency inverter increases the number of levels by four. This paper also introduces a hybrid switching algorithm which uses very simple arithmetic and logical operations. The simplified hybrid switching algorithm is generalized for any number of levels. The proposed simplified switching algorithm is developed using a TMS320F2812 DSP board. The operation and performance of the proposed multilevel converter are verified by simulations using MATLAB/SIMULINK and experimental results.

Multimode Hybrid Control Strategy of LLC Resonant Converter in Applications with Wide Input Voltage Range

  • Li, Yan;Zhang, Kun;Yang, Shuaifei
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.201-210
    • /
    • 2019
  • This paper proposes a multimode hybrid control strategy that can achieve zero-voltage switching of primary switches and zero-current switching of secondary rectifier diodes in a wide input voltage range for full-bridge LLC resonant converters. When the input voltage is lower than the rated voltage, the converter operates in Mode 1 through the variable-frequency control strategy. When the input voltage is higher than the rated voltage, the converter operates in Mode 2 through the VF and phase-shift control strategy until the switching frequency reaches the upper limit. Then, the converter operates in Mode 3 through the constant-frequency and phase-shift control strategy. The secondary-side diode current will operate in the discontinuous current mode in Modes 1 and 3, whereas it will operate in the boundary current mode in Mode 2. The current RMS value and conduction loss can be reduced in Mode 2. A detailed theoretical analysis of the operation principle, the voltage gain characteristics, and the realization method is presented in this paper. Finally, a 500 W prototype with 100-200 V input voltage and 40 V output voltage is built to verify the feasibility of the multimode hybrid control strategy.

Improvement of the Performance of the Cascaded Multilevel Inverters Using Power Cells with Two Series Legs

  • Babaei, Ebrahim;Dehqan, Ali;Sabahi, Mehran
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.223-231
    • /
    • 2013
  • A modular three-phase multilevel inverter especially suitable for electrical drive applications has been previously presented. This topology is based on series connection of power cells in which each cell comprised of two inverter legs in series. In this paper, in order to generate the maximum number of voltage levels with reduced number of switches, three algorithms are proposed for determination of the magnitudes of dc voltage sources. In addition, a new hybrid multilevel inverter is proposed that is composed of series connection of the previously presented multilevel inverter and some H-bridges. The proposed topology has been compared with some other presented multilevel inverters. The performance of the proposed multilevel inverter has been verified by simulation and experimental results of a single-phase 39-level multilevel inverter.

Hybrid극 구조의 베어링리스 SRM 특성해석 (Characteristic Analysis of Bearingless SRM with Hybrid Stator Poles)

  • ;박태흡;이동희;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.6-8
    • /
    • 2008
  • In this paper a novel bearingless switched reluctance motor (SRM) with hybrid stator poles is proposed. The operating principle of proposed motor is also presented. Compared with existing bearingless SRM, it has many advantages such as lower number of switches and cost, simpler control algorithm, lower thermal load. Meanwhile through finite element method (FEM) characteristics of proposed structure such as inductance, torque and radial force can be obtained. According to the FEM results, the above advantages of the proposed structure can be verified.

  • PDF

서스펜션 포스 극을 가지는 베어링리스 SRM의 특성 (Characteristic Analysis of Bearingless SRM with Hybrid Stator Poles)

  • ;김태형;박태흡;이동희;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.661-662
    • /
    • 2008
  • In this paper a novel bearingless switched reluctance motor (BLSRM) with hybrid stator poles is proposed. The operating principle of the proposed motor is presented. Further one prototype motor is designed and manufactured. Compared with existing BLSRM, it has many advantages such as lower number of switches and cost, simpler control algorithm, lower thermal load. Meanwhile through finite element method (FEM) characteristics of the proposed structure such as inductance, torque and radial force can be obtained. According to the FEM results, the above advantages of the proposed structure can be verified.

  • PDF

A Single-Phase Hybrid Multi-Level Converter with Less Number of Components

  • Kim, Ki-Mok;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.105-107
    • /
    • 2018
  • This paper presents a new hybrid multilevel converter topology, which consists of a combination of the series connected switched capacitor units with boost ability, and an H-bridge with T-type bidirectional switches. The proposed converter boosts the input voltage without any bulky inductors, and has the small number of components, which can make the size and cost of a power converter greatly reduced. The output filter size and harmonics are also reduced by the high quality multilevel output. In addition, there is no need for complicated methods to balance the capacitor voltage. Simulation and experimental results with a nine-level converter system are presented to validate the proposed topology and modulation method.

  • PDF