• Title/Summary/Keyword: Hybrid nanofibers

Search Result 23, Processing Time 0.023 seconds

Titanium Dioxide Nanofibers Prepared by Using Electrospinning Method

  • Ding, Bin;Kim, Chul Ki;Kim, Hak Yong;Seo, Min Kang;Park, Soo Jin
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.105-109
    • /
    • 2004
  • The synthesis of titanium dioxide nanofibers with 200-300nm diameter was presented. The new inorganic-organic hybrid nanofibers were prepared by sol-gel processing and electrospinning technique using a viscous solution of titanium isopropoxide (TiP)/poly(vinyl acetate) (PVAc). Pure titanium dioxide nanofibers were obtained by high temperature calcination of the inorganic-organic composite fibers. SEM, FT-IR, and WAXD techniques were employed to characterize these nanofibers. The titanium dioxide nanostructured fibers have rougher surface and smaller diameter compare with PVAc/TiP composite nanofibers. The anatase to rutile phase transformation occurred when the calcination temperature was increased from $600^{\circ}C$ to $1000^{\circ}C$.

Electrical Characteristics of Cu2O-PVP Nanofibers Fabricated by Electrospinning (전기방사법으로 제조된 Cu2O-PVP 나노사의 전기적 특성)

  • Kwak, Ki-Yeol;Cho, Kyoung-Ah;Yun, Jungg-Won;Kim, Sang-Sig
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.650-653
    • /
    • 2009
  • Hybrid nanofibers made of $Cu_2O$ and polyvinyl pyrrolidone were fabricated by electrospinning on glass substrates. The current magnitude of the $Cu_2O$-PVP hybrid nanofibers is 10 times larger than that of pure PVP nanofibers. In addition, $Cu_2O$-PVP nanofibers possess high sensitivity to air at room temperature than pure PVP nanifibers.

Electrical characteristics of $Cu_2O$-PVP nanofibers fabricated by electro spinning (전기방사법으로 제조된 $Cu_2O$-PVP 나노사의 전기적 특성)

  • Kwak, Ki-Yeol;Cho, Kyoung-Ah;Yun, Jeong-Gwon;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.33-34
    • /
    • 2009
  • Hybrid nanofibers made of $Cu_2O$ and polyvinyl pyrrolidone were fabricated by electrospinning. The current magnitude of the $Cu_2O$-PVP hybrid nanofibers is 10 times larger than that of pure PVP nanofibers. In addition, $Cu_2O$-PVP nanofibers possess high sensitivity to air at room temperature.

  • PDF

Fabrication and Evaluation of Hybrid Scaffold by Nano-Micro Precision Deposition System (나노-마이크로 정밀 분사 시스템을 이용한 하이브리드 인공지지체의 제작 및 평가)

  • Ha, Seong-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.875-880
    • /
    • 2014
  • Recently, three-dimensional scaffolds and nanofibers are being developed for bone tissue regeneration. In this study, we fabricated a hybrid scaffold using a nano-micro precision deposition system. The fabrication process involved the application of the solid freeform fabrication (SFF) technology and electrospinning. The hybrid scaffolds were combined using micro scaffolds and nanofibers. The nanofibers were deposited on each layer of the micro scaffolding using the electrospinning process. The micro scaffolds were fabricated using the SFF technology at a temperature of $100^{\circ}C$, pressure of 650 kPa, and scan velocity of 250 mm/s. Nanofiber fabrication was conducted by means of electrospinning using the flow rate, solution concentration, distance from the tip to the collector (TCD), and voltage. The nanofibers were fabricated using a flow rate of 0.1 ml/min, voltage of 5 kV, TCD of 1 mm, and 10 wt% of solution concentration. MG-63 cells were seeded into the hybrid scaffold for the purpose of its evaluation.

Ti02/CNT Hybrid Nanofiber Electrode for Energy Conversion Devices (에너지 전환 소자용 $TiO_{2}/CNT$ 하이브리드 나노 섬유 전극)

  • Seo, Jae-Sub;Kim, Joo-Yong;Jin, Hyoung-Joon;Kang, Min-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.323-325
    • /
    • 2007
  • $TiO_{2}$ electrode electrospun directly onto the substrate was developed for energy conversion device. To enhance energy conversion efficiency of dye-sensitized solar cell, electrodes should have higher surface area to absorb more dyes and higher conductivity to reduce recombination of generated electrons. $TiO_{2}$ nanofibers with higher surface areas were fabricated by annealing electrospun $TiO_{2}/PVP$ nanofibers at $500^{\circ}C$ for 3 hrs in air. it was revealed that $TiO_{2}$ nanofiber electrodes is hybrid with MWNT showed higher conductivity than $TiO_{2}$ semiconductor electrode possibly due to band gap change.

  • PDF

Fabrication of Lignin Nanofibers Using Electrospinning (전기방사를 이용한 리그닌 나노섬유의 제조)

  • Lee, Eunsil;Lee, Seungsin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.38 no.3
    • /
    • pp.372-385
    • /
    • 2014
  • Lignin is an abundant natural polymer in the biosphere and second only to cellulose; however, it is under-utilized and considered a waste. In this study, lignin was fabricated into nanofibers via electrospinning. The critical parameters that affected the electrospinnability and morphology of the resulting fibers were examined with the aim to utilize lignin as a resource for a new textile material. Poly(vinyl alcohol) (PVA) was added as a carrier polymer to facilitate the fiber formation of lignin, and the electrospun fibers were deposited on polyester (PET) nonwoven substrate. Eleven lignin/PVA hybrid solutions with a different lignin to PVA mass ratio were prepared and then electrospun to find an optimum concentration. Lignin nano-fibers were electrospun under a variety of conditions such as various feed rates, needle gauges, electric voltage, and tip-to-collector distances in order to find an optimum spinning condition. We found that the optimum concentration for electrospinning was a 5wt% PVA precursor solution upon the addition of lignin with the mass ratio of PVA:lignin=1:5.6. The viscosity of the lignin/PVA hybrid solution was determined as an important parameter that affected the electrospinning process; in addition, the interrelation between the viscosity of hybrid solution and the electrospinnability was examined. The solution viscosity increased with lignin loading, but exhibited a shear thinning behavior beyond a certain concentration that resulted in needle clogging. A steep increase in viscosity was also noted when the electrospun system started to form fibers. Consequently, the viscosity range to produce bead-free lignin nanofibers was revealed. The energy dispersive X-ray analysis confirmed that lignin remained after being transformed into nanofibers. The results indicate the possibility of developing a new fiber material that utilizes biomass with resulting fibers that can be applied to various applications such as filtration to wound dressing.

A Study about the Strength and Microstructure of Hardened Cement Pastes Including Nanofibers (나노 섬유를 혼합한 시멘트 페이스트의 미세구조와 강도에 대한 연구)

  • Nguyen, Tri N.M;Kim, Jung Joong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.177-182
    • /
    • 2020
  • In this study, the effect of nanofibers in cement pastes on the compressive and tensile strength of hardened cement pastes was studied. Two types of nanofibers, nylon 66 nanofibers and carbon nanotube-nylon 66 hybrid nanofibers, were manufactured by electrospinning methodology and mixed in cement powder respectively. The specimens for experiments were prepared by water to cement ratio of 0.5 and cured in water for 28 days. The effect of nanofibers on the increase of the compressive and tensile strength were confirmed by the experimental results. The well-linking effect of nanofibers in the microstructure of the hardened cement pastes has been found by scanning electron microscope (SEM) analysis and well-explained for the increase in mechanical strength. Besides, field emission transmission electron microscope (FE-TEM) analysis and thermal gravimetric analysis (TGA) have also been conducted to analyze the properties of nanofibers as well as the microstructure of the hardened modified cement pastes.

Fabrication of Nanofiber-Combined 3D Scaffolds using Dual-Head Deposition Technology (듀얼헤드 적층 기술을 이용한 나노섬유로 결합된 3D 인공지지체 제작)

  • Sa, Min-Woo;Lee, Chang-Hee;Kim, Jong Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.108-115
    • /
    • 2018
  • In bone tissue engineering, polycaprolactone (PCL) is one of the most widely used biomaterials to manufacture scaffolds as a synthetic polymer with biodegradability and biocompatibility. The polymer deposition system (PDS) with four axis heads, which can dispense bio-polymers, has been used in scaffold fabrication for tissue engineering applications. A dual-head deposition technology of PDS is an effective technique to fabricate 3D scaffolds. The electrospinning technology has been widely used to fabricate porous and highly interconnected polymer fibers. Thus, PDS can fabricate nanofiber-combined hybrid scaffolds using fused deposition modeling (FDM) and electrospinning methods. This study aims to fabricate nanofiber-combined scaffolds with uniform nanofibers using PDS. The PCL nanofibers were fabricated and evaluated according to the fabrication process parameters. PCL nanofibers were successfully fabricated when the applied voltage, tip-to-collector distance, flow rate, and solution concentration were 5 kV, 1 cm, 0.1 ml/h, and 8 wt%, respectively. The cell proliferation was evaluated according to the electrospinning time. Scanning electron microscopy was used to acquire images of the cross-sectioned hybrid scaffolds. The cell proliferation test of the PCL and nanofiber-combined hybrid scaffolds was performed using a CCK-8 assay according to the electrospinning time. The result of in-vitro cell proliferation using osteosarcoma MG-63 cells shows that the hybrid scaffold has good potential for bone regeneration.

Electrospun Magnetic Nanofiber as Multifunctional Flexible EMI-Shielding Layer and its Optimization on the Effectiveness

  • Yu, Jiwoo;Nam, Dae-Hyun;Lee, Young-Joo;Joo, Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.57-63
    • /
    • 2016
  • We developed a flexible and micro-thick electromagnetic interference (EMI) shielding nanofabric layer that also functions as a water resisting and heat sinking material. Electrospinning followed by a simple heat treatment process was carried on to produce the EMI-shielding Ni/C hybrid nanofibers. The ambient oxygen partial pressure ($pO_2$ = 0.1, 0.7, 1.3 Torr) applied during the heat treatment was varied in order to optimize the effectiveness of EMI-shielding by modifying the size and crystallinity of the magnetic Ni nanoparticles distributed throughout the C nanofibers. Permittivity and permeability of the nanofibers under the electromagnetic (EM) wave frequency range of 300 MHz~1 GHz were measured, which implied the EMI-shielding effectiveness (SE) optimization at $pO_2$ = 0.7 Torr during the heat treatment. The materials' heat diffusivity for both in-plane direction and vertical direction was measured to confirm the anisotropic thermal diffusivity that can effectively deliver and sink the local heat produced during device operations. Also, the nanofibers were aged at room temperature in oxygen ambient for water resisting function.

The study of electrode for energy storaging at supercapacitor system using nano carbon fiber material (나노 탄소재료를 이용한 에너지 저장형 슈퍼커패시터용 전극 제조)

  • Hwang, Sung-Ik;Choi, Won-Kyung;Momma, Toshiyukl;Osaka, Tetsuya;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.683-686
    • /
    • 2004
  • In recent years, the supercapacitor and hybrid capacitor have related with substitutional energy source focused of many scientists because of their usage in power sources for electric vehicles, computers and other electric devices. The storage energy of electrical charge is based on electrostatic interactions in the electric double layer at the electrode/electrolyte interface, resulting in high rate capability and long cycle performance compared with batteries based on Faradaic electrode reactions. So we have been considered to carbon nanofibers as the ideal material for supercapacitors due to their high utilization of specific surface area, good conductivity, chemical stability and other advantages. In this work, we aimed to find out that the capacitance have increased because of electrochemical capacitance to provide by carbon nanofibers. Also carbon nanofibers based on chemical method and water treatment have been resulted larger capacitances and also exhibit better electrochemical behaviors about 15% than before of nontreated state. And also optical observations with treated and nontrteated carbon nanofibers discussed by the TEM, SEM, EDX, BET works and specific surface area analyzer. Their results also focused on the surface area of electrode and electrical capacitance was also improved by the effect of surface treatments.

  • PDF