Browse > Article
http://dx.doi.org/10.12652/Ksce.2020.40.2.0177

A Study about the Strength and Microstructure of Hardened Cement Pastes Including Nanofibers  

Nguyen, Tri N.M (Kyungnam University)
Kim, Jung Joong (Kyungnam University)
Publication Information
KSCE Journal of Civil and Environmental Engineering Research / v.40, no.2, 2020 , pp. 177-182 More about this Journal
Abstract
In this study, the effect of nanofibers in cement pastes on the compressive and tensile strength of hardened cement pastes was studied. Two types of nanofibers, nylon 66 nanofibers and carbon nanotube-nylon 66 hybrid nanofibers, were manufactured by electrospinning methodology and mixed in cement powder respectively. The specimens for experiments were prepared by water to cement ratio of 0.5 and cured in water for 28 days. The effect of nanofibers on the increase of the compressive and tensile strength were confirmed by the experimental results. The well-linking effect of nanofibers in the microstructure of the hardened cement pastes has been found by scanning electron microscope (SEM) analysis and well-explained for the increase in mechanical strength. Besides, field emission transmission electron microscope (FE-TEM) analysis and thermal gravimetric analysis (TGA) have also been conducted to analyze the properties of nanofibers as well as the microstructure of the hardened modified cement pastes.
Keywords
Nanofibers; Microstructure; Cement; Tensile strength; Compressive strength;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Foley, E. M., Kim, J. J. and Taha, M. M. R. (2012). "Synthesis and nano-mechanical characterization of calcium-silicate-hydrate (C-S-H) made with 1.5 CaO/SiO2 mixture." Cement and Concrete Research, Vol. 42, pp. 1225-1232.   DOI
2 Han, T., Nag, A., Mulkhopadhyay, S. C. and Xu, Y. (2019). "Carbon nanotubes and its gas-sensing applications: A review." Sensors and Actuators A: Physical, Vol. 291, pp. 107-143.   DOI
3 Hsieh, Y. C., Chou, Y. C., Lin, C. P., Hsieh, T. F. and Shu, C. M. (2010). "Thermal analysis of multi-walled carbon nanotubes by kissinger's corrected kinetic equation." Aerosol and Air Quality Research, Vol. 10, No. 3, pp. 212-218.   DOI
4 Jafari, S. (2018). "Engineering applications of carbon nanotubes." Carbon Nanotube-Reinforced Polymers, pp. 25-40.
5 Katsogiannis, K. A. G., Vladisavljevic, G. T. and Georgiadou, S. (2015). "Porous electrospun polycaprolactone (PCL) fibres by phase separation." European Polymer Journal, Vol. 69, pp. 284-295.   DOI
6 Kim, J. J., Foley, E. M. and Taha, M. M. R. (2013). "Nano-mechanical characterization of synthetic calcium-silicate-hydrate (C-S-H) with varying CaO/SiO2 mixture ratios." Cement & Concrete Composites, Vol. 36, pp. 65-70.   DOI
7 Kochov, K., Gauvin, F., Schollbach, K. and Brouwers, H. J. H. (2020). "Using alternative waste coir fibres as a reinforcement in cement-fibre composites." Construction and Building Materials, Vol. 231.
8 Kroschwitz, J. I. (1998). Encyclopedia of polymer science and engineering, John Wiley & Sons, New Jersey, USA.
9 Liu, W., Zhang, S., Chen, X., Yu, L., Zhu, X. and Feng, Q. (2010). "Thermal behavior and fire performance of nylon-6,6 fabric modified with acrylamide by photografting." Polymer Degradation and Stability, Vol. 95, No. 9, pp. 1842-1848.   DOI
10 Mehta, P. K. and Monteiro, P. J. M. (2006). Concrete: microstructure, properties, and materials - Chapter 6. United States of America, The McGraw-Hill Companies, Inc: 203-252, New York, NY.
11 Mohsen, M. O., Taha, R., Taqa, A. A. and Shaat, A. (2017). "Optimum carbon nanotubes' content for improving flexural and compressive strength of cement paste." Construction and Building Materials, Vol. 150, pp. 395-403.   DOI
12 Naidu, P. K., Pulagara, N. V. and Dondapati, R. S. (2014). "Carbon nanotubes in engineering applications: A review." Progress in Nanotechnology and Nanomaterials, Vol. 3, No. 4, pp. 79-82.   DOI
13 Navarro-Pardo, F., Martinez-Barrera, G., Martinez-Hernandez, A. L., Castano, V. M., Rivera-Armenta, J. L., Medellín-Rodriguez, F. and Velasco-Santos, C. (2013). "Effects on the thermo-mechanical and crystallinity properties of nylon 6,6 electrospun fibres reinforced with one dimensional (1D) and two dimensional (2D) carbon." Materials, Vol. 6, No. 8, pp. 3494-3513.   DOI
14 Nguyen, T. N. M., Moon, J. and Kim, J. J. (2020). "Microstructure and mechanical properties of hardened cement paste including Nylon 66 nanofibers." Construction and Building Materials, Vol. 23.
15 Rocha, V. V., Ludvig, P., Trindade, A. C. C. and Silva, F. dA. (2019). "The influence of carbon nanotubes on the fracture energy, flexural and tensile behavior of cement based composites." Construction and Building Materials, Vol. 209, pp. 1-8.   DOI
16 Saleh, H. M., El-Sheikh, S. M., Elshereafy, E. E. and Essa, A. K. (2019). "Mechanical and physical characterization of cement reinforced by iron slag and titanate nanofibers to produce advanced containment for radioactive waste." Construction and Building Materials, Vol. 200, pp. 135-145.   DOI
17 Treacy, M. M. J, Ebbesen, T. W. and Gibson, J. M. (1996). "Exceptionally high Young's modulus observed for individual carbon nanotubes." Nature, Vol. 381, pp. 678-680.   DOI
18 Suzuki, A., Chen, Y. and Kunugi, T. (1998). "Application of a continuous zone-drawing method to nylon 66 fibres." Polymer, Vol. 39, No. 22, pp. 5335-5341.   DOI
19 Taylor, H. F. W. (1997). Cement Chemistry, Chapter 5. USA, Thomas Telford.
20 Thenmozhi, S., Dharmaraj, N., Kadirvelu, K. and Kim, H. Y. (2017). "Electrospun nanofibers: New generation materials for advanced applications." Materials Science and Engineering B, Vol. 217, pp. 36-48.   DOI
21 Walters, D. A., Ericson, L. M., Casavant, M. J., Liu, J., Colbert, D. T., Smith, K. A. and Smalley, R. E. (1999). "Elastic strain of freely suspended single-wall carbon nanotube ropes." Applied Physics Letters, Vol. 74, No. 25, pp. 3803-3805.   DOI
22 Wang, M., Wang, R., Yao, H., Farhan, S., Zheng, S., Wang, Z., Du, C. and Jiang, H. (2016). "Research on the mechanism of polymer latex modified cement." Construction and Building Materials, Vol. 111, pp. 710-718.   DOI
23 Xue, J., Xie, J., Liu, W. and Xia, Y. (2017). "Electrospun nanofibers: New concepts, materials, and applications." Accounts of Chemical Research, Vol. 50, No. 8, pp. 1976-1987.   DOI
24 ASTM C307-03 (2012). Standard test method for tensile strength of chemical-resistant mortar, grouts, and monolithic surfacings, ASTM International, West Conshohocken, PA, 2012, www.astm.org.
25 Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F. and Ruoff, R. S. (2000). "Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load." Science, Vol. 287, No. 5453, pp. 637-640.   DOI
26 Zussman, E., Burman, M., Yarin, A. L., Khalfin, R. and Cohen, Y. (2006). "Tensile deformation of electrospun nylon-6,6 nanofibers." Journal of Polymer Science, Part B, Polymer Physic, Vol. 44, No. 10, pp. 1482-1489.   DOI
27 An, T., Pant, B., Kim, S. Y., Park, M., Park, S. J. and Kim, H. Y. (2017). "Mechanical and optical properties of electrospun nylon-6,6 nanofiber reinforced cyclic butylene terephthalate composites." Journal of Industrial and Engineering Chemistry, Vol. 55, pp. 35-39.   DOI
28 Arinstein, A. (2018). Electrospun Polymer Nanofibers, chapter 1. USA, Pan Stanford Publishing Pte. Ltd., pp. 1-4.
29 ASTM C109/C109M-16a (2016), Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International, West Conshohocken, PA, 2016, www.astm.org.
30 Baji, A., Mai, Y. W., Wong, S. C., Abtahi, M. and Du, X. (2010). "Mechanical behavior of self-assembled carbon nanotube reinforced nylon 6,6 fibers." Composites Science and Technology, Vol. 70, pp. 1401-1409.   DOI
31 Brown, L. and Sanchez, F. (2018). "Influence of carbon nanofiber clustering in cement pastes exposed to sulfate attack." Construction and Building Materials, Vol. 166, pp. 181-187.   DOI
32 Flores, Y. C., Cordeiro, G. C., Filho, R. D. T and Tavares, L. M. (2017). "Performance of Portland cement pastes containing nano-silica and different types of silica." Construction and Building Materials, Vol. 146, pp. 524-530.   DOI