Browse > Article
http://dx.doi.org/10.5850/JKSCT.2014.38.3.372

Fabrication of Lignin Nanofibers Using Electrospinning  

Lee, Eunsil (Dept. of Clothing & Textiles, Yonsei University)
Lee, Seungsin (Dept. of Clothing & Textiles, Yonsei University)
Publication Information
Journal of the Korean Society of Clothing and Textiles / v.38, no.3, 2014 , pp. 372-385 More about this Journal
Abstract
Lignin is an abundant natural polymer in the biosphere and second only to cellulose; however, it is under-utilized and considered a waste. In this study, lignin was fabricated into nanofibers via electrospinning. The critical parameters that affected the electrospinnability and morphology of the resulting fibers were examined with the aim to utilize lignin as a resource for a new textile material. Poly(vinyl alcohol) (PVA) was added as a carrier polymer to facilitate the fiber formation of lignin, and the electrospun fibers were deposited on polyester (PET) nonwoven substrate. Eleven lignin/PVA hybrid solutions with a different lignin to PVA mass ratio were prepared and then electrospun to find an optimum concentration. Lignin nano-fibers were electrospun under a variety of conditions such as various feed rates, needle gauges, electric voltage, and tip-to-collector distances in order to find an optimum spinning condition. We found that the optimum concentration for electrospinning was a 5wt% PVA precursor solution upon the addition of lignin with the mass ratio of PVA:lignin=1:5.6. The viscosity of the lignin/PVA hybrid solution was determined as an important parameter that affected the electrospinning process; in addition, the interrelation between the viscosity of hybrid solution and the electrospinnability was examined. The solution viscosity increased with lignin loading, but exhibited a shear thinning behavior beyond a certain concentration that resulted in needle clogging. A steep increase in viscosity was also noted when the electrospun system started to form fibers. Consequently, the viscosity range to produce bead-free lignin nanofibers was revealed. The energy dispersive X-ray analysis confirmed that lignin remained after being transformed into nanofibers. The results indicate the possibility of developing a new fiber material that utilizes biomass with resulting fibers that can be applied to various applications such as filtration to wound dressing.
Keywords
Electrospinning; Nanofiber; Lignin; Biomass; Carrier polymer;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Poole, A. J., Church, J. S., & Huson M. G. (2009). Environmentally sustainable fibers from regenerated protein. Biomacromolecules, 10(1), 1-8.   DOI   ScienceOn
2 Ruiz-Rosas, R., Bedia, J., Lallave, M., Loscertales, I. G., Barrero, A., Rodriguez-Mirasol, J., & Cordero, T. (2009). The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon, 48(3), 696-705.
3 Ruiz-Rosas, R., Bedia, J., Lallave, M., Loscertales, I. G., Barrero, A., Rodriguez-Mirasol, J., & Cordero, T. (2010). Preparation and characterization of co-electrospun lignin/alumina microfibers and tubes. Proceedings of the Carbon Conference 2010, USA, 10, 453-454.
4 Schreiber, M., Vivekanandhan, S., Mohanty, A. K., & Misra, M. (2012). A study on the electrospinning behavior and nanofibre morphology of anionically charged lignin. Advanced Material Letters, 3(6), 476-480.
5 Visakh, P. M., Mathew, A. P., & Thomas, S. (2013). Natural polymers: Their blends, composites and nanocomposites: State of art, new challenges and opportunities. In S. Thomas, P. M. Visakh, & A. P. Mathew (Eds.), Advances in natural polymers (pp. 1-20). Dordrecht: Springer.
6 Zhang, Y. H. (2008). Reviving the carbohydrate economy via multi-product lignocelluloses biorefineries. Journal of Industrial Microbiology and Biotechnology, 35(5), 367-375.   DOI   ScienceOn
7 Zimniewska, M., Kozlowski, R., & Batog. J. (2008). Nanolignin modified linen fabric as a multifunctional product. Molecular Crystals and Liquid Crystals, 484(1), 409-416.
8 Lallave, M., Bedia, J., Ruiz-Rosas, R., Rodriguez-Miraso, J., Cordero, T., Otero, J. C., Marquez, M., Barrero, A., & Loscertales, I. G. (2007). Filled and hollow carbon nanofiber by coaxial electrospinning of alcell lignin without binder polymers. Advanced Materials, 19(23), 4292-4296.   DOI   ScienceOn
9 Leung, V., & Ko, F. (2010). Biomedical applications of nanofibers. Polymers for Advanced Technologies, 22(3), 350-365.
10 Lee, J. I., Kim, I. S., & So, H. J. (2009). 목질계 바이오매스의 에너지 활용방안 [A study on the energy utilization of woody biomass]. Seoul: Gyeonggi Research Institute.
11 Park, T. J., Jung, Y. J., Choi, S. W., Park, H., Kim, H., Kim, E., Lee, S. H., & Kim, J. H. (2011b). Photoluminescent synthetic wood fibers from an ionic liquid via electrospinning. Macromolecular Research, 19(4), 317-320.   과학기술학회마을   DOI   ScienceOn
12 Marsano, E., Francis, L., & Giunco, F. (2010). Polyamide 6 nanofibrous nonwovens via electrospinning. Journal of Applied Polymer Science, 117(3), 1754-1765.
13 Nada, A. M. A., El-Diwanya, A. I., & Elshafei, A. M. (1989). Infrared and antimicrobial studies on different lignins. Acta Biotechnologica, 9(3), 295-298.   DOI
14 Park, T. J., Jung, Y. J., Choi, S. W., Park, H., Kim, H., Kim, E., Lee, S. H., & Kim, J. H. (2011a). Native chitosan/cellulose composite fibers from an ionic liquid via electrospinning. Macromolecular Research, 19(3), 213-215.   과학기술학회마을   DOI   ScienceOn
15 Perez, J., Munoz-Dorado, J., de la Rubia, T., & Martinez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5(2), 53-63.   DOI   ScienceOn
16 Holladay, J. E., Bozell, J. J., White, J. F., & Johnson, D. (2007). Top value-added chemicals from biomass. volume II - results of screening or potential candidates from biorefinery lignin, technical report, October 2007. Richland, WA: Pacific Northwest National Laboratory.
17 Hu, T. Q. (2002). Chemical modification, properties, and usage of lignin. New York: Kluwer Academic/Plenum.
18 Hur, Y., & Lee, S. (2011). Fabrication of ZnO and $TiO_2$ nanocomposite fibers and their photocatalytic decomposition of harmful gases. Journal of the Korean Society of Clothing and Textiles, 35(11), 1297-1308.   과학기술학회마을   DOI   ScienceOn
19 Kadla, J. F., Kubo, S., Venditti, R. A., Gilbert, R. D., Compere, A. L., & Griffith, W. (2002). Lignin-based carbon fibers for composite fiber applications. Carbon 40(15), 2913-2920.   DOI   ScienceOn
20 Jang, S. Y., & Kim, Y. G. (2013). 전기분사방법을 이용한 나노 카본재료 박막제조 및 태양전지 전극재료로의 응용 [Fabrication of nano carbon material synthesized membrane and application to solar cell electrode]. Ceramist, 16(1), 59-66.   과학기술학회마을
21 Kim, J. J., Baek, K. H., & Choi, J. W. (2011). 바이오에너지 바이오매스 [Bioenergy and biomass]. Seoul: Bookshill.
22 Kim, Y. S. (2011). A research trend on utilization of the byproduct (lignin) from bioethanol production process with lignocellulosic biomass. Journal of Forest Science, 27(3), 183-194.
23 Kubo, S., & Kadla, J. F. (2004). Poly(ethylene oxide)/organosolv lignin blends: Relationship between thermal properties, chemical structure, and blend behavior. Macromolecules, 37(18), 6904-6911.   DOI   ScienceOn
24 Kubo, S., & Kadla, J. F. (2005). Hydrogen bonding in lignin: A fourier transform infrared model compound study. Biomacromolecules, 6(5), 2815-2821.   DOI   ScienceOn
25 Ahn, Y., Lee, S. H., Kim, H. J., Yang, Y. H., Hong, J. H., Kim, Y. H., & Kim, H. (2012). Electrospinning of lignocellulosic biomass using ionic liquid. Carbohydrate Polymers, 88 (1), 395-398.   DOI   ScienceOn
26 Cho, D., Nnadi, O., Netravali, A., & Joo, Y. L. (2010). Electrospun hybrid soy protein/PVA fibers. Macromolecular Materials and Engineering, 295(8), 763-773.   DOI   ScienceOn
27 Gericke, M., Schlufter, K., Liebert, T., Heinze, T., & Budtova, T. (2009). Rheological properties of cellulose/ionic liquid solutions: From dilute to concentrate states. Biomacromolecules, 10(5), 1188-1194.   DOI   ScienceOn
28 Cho, D., Netravali, A. N., & Joo, Y. L. (2012). Mechanical properties and biodegradability of electrospun soy protein isolate/PVA hybrid nanofibers. Polymer Degradation and Stability, 97(5), 747-754.   DOI   ScienceOn
29 Dallmeyer, I., Ko, F., & Kadla, J. F. (2010). Electrospinning of technical lignins for the production of fibrous networks. Journal of Wood Chemistry and Technology, 30(4), 315-329.   DOI   ScienceOn
30 Eom, I. Y., Kim, K. H., & Choi, J. W. (2009). 친환경 천연고분자 소재로서 리그닌의 생성, 구조 및 활용 [Formation, structure, and application of lignin as an eco-friendly biopolymer]. Fiber Technology and Industry, 13(1), 28-38.
31 Hardelin, L., Thunberg, J., Perzon, E., Westman, G., Walkenstrom, P., & Gatenholm, P. (2012). Electrospinning of cellulose nanofibers from ionic liquids: the effect of different cosolvents. Journal of Applied Polymer Science, 125(3), 1901-1909.   DOI   ScienceOn
32 Ago, M., Okajima, K., Jakes, J. E., Park, S., & Rojas, O. J. (2012). Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals. Biomacromolecules, 13(3), 918-926.   DOI   ScienceOn
33 Ahn, B. I., Kim, C. H., Lee, J. Y., Sim, S. W., Jo, H. S., Lee, G. S., & Lee, J. Y. (2012). Analysis on the trend of the utilization of woody biomass - production, supply, and practical use of woody biomass. Journal of Korea Technical Association of the Pulp and Paper Industry, 44(4), 32-42.   과학기술학회마을   DOI   ScienceOn
34 Dong, X., Dong, M., Lu, Y., Turley, A., Jin, T., & Wu, C. (2011). Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Industrial Crops and Products, 34(3), 1629-1634.   DOI   ScienceOn
35 Lee, K., & Lee, S. (2010). Fabrication and evaluation of electrospun $TiO_{2}$ nanocomposite fibers for the development of UV-protective textile materials. Journal of the Korean Society of Clothing and Textiles, 34(11), 1767-1778.   과학기술학회마을   DOI