• Title/Summary/Keyword: Hybrid memory

Search Result 282, Processing Time 0.042 seconds

A Deep Learning Model for Extracting Consumer Sentiments using Recurrent Neural Network Techniques

  • Ranjan, Roop;Daniel, AK
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.238-246
    • /
    • 2021
  • The rapid rise of the Internet and social media has resulted in a large number of text-based reviews being placed on sites such as social media. In the age of social media, utilizing machine learning technologies to analyze the emotional context of comments aids in the understanding of QoS for any product or service. The classification and analysis of user reviews aids in the improvement of QoS. (Quality of Services). Machine Learning algorithms have evolved into a powerful tool for analyzing user sentiment. Unlike traditional categorization models, which are based on a set of rules. In sentiment categorization, Bidirectional Long Short-Term Memory (BiLSTM) has shown significant results, and Convolution Neural Network (CNN) has shown promising results. Using convolutions and pooling layers, CNN can successfully extract local information. BiLSTM uses dual LSTM orientations to increase the amount of background knowledge available to deep learning models. The suggested hybrid model combines the benefits of these two deep learning-based algorithms. The data source for analysis and classification was user reviews of Indian Railway Services on Twitter. The suggested hybrid model uses the Keras Embedding technique as an input source. The suggested model takes in data and generates lower-dimensional characteristics that result in a categorization result. The suggested hybrid model's performance was compared using Keras and Word2Vec, and the proposed model showed a significant improvement in response with an accuracy of 95.19 percent.

CHALLENGES AND PROSPECTS FOR WHOLE-CORE MONTE CARLO ANALYSIS

  • Martin, William R.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.2
    • /
    • pp.151-160
    • /
    • 2012
  • The advantages for using Monte Carlo methods to analyze full-core reactor configurations include essentially exact representation of geometry and physical phenomena that are important for reactor analysis. But this substantial advantage comes at a substantial cost because of the computational burden, both in terms of memory demand and computational time. This paper focuses on the challenges facing full-core Monte Carlo for keff calculations and the prospects for Monte Carlo becoming a routine tool for reactor analysis.

Electric and Electronic Systems for the 21st Century Automobile (21세기 자동차를 위한 전기.전자 시스템)

  • SunWoo, Myoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.451-453
    • /
    • 1998
  • Global competition of automotive market, affordable prices of electronic components, and tougher regulations on emission, fuel economy, and safety become the major reason that automotive industries rapidly employ a large number of electric and electronic systems. Considering that the application of electronic technologies for automobile is increasing at a rapid rate, it would be worthwhile to evaluate the trend of the uses of major electric and electronic systems for the 21st century vehicle. The major technology will be leaded by 32/64-bit microcontroller, on-chip flash memory, hybrid ASICs, IGBT, and smart sensors.

  • PDF

Hybrid Monitoring Scheme for End-to-End Performance Enhancement of Real-time Media Transport (실시간 미디어 전송의 종단간 성능 향상을 위한 혼성 모니터링 기법)

  • Park Ju-Won;Kim JongWon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10B
    • /
    • pp.630-638
    • /
    • 2005
  • As real-time media applications based on IP multicast networks spread widely, the end-to-end QoS (quality of service) provisioning for these applications have become very important. To guarantee the end-to-end QoS of multi-party media applications, it is essential to monitor the time-varying status of both network metrics (i.e., delay, jitter and loss) and system metrics (i.e., CPU and memory utilization). In this paper, targeting the multicast-enabled AG (Access Grid) group collaboration tool based on multi-Party real-time media services, a hybrid monitoring scheme that can monitor the status of both multicast network and node system is investigated. It combines active monitoring and passive monitoring approaches to measure multicast network. The active monitoring measures network-layer metrics (i.e., network condition) with probe packets while the passive monitoring checks application-layer metrics (i.e., user traffic condition by analyzing RTCP packets). In addition, it measures node system metrics from system API. By comparing these hybrid results, we attempt to pinpoint the causes of performance degradation and explore corresponding reactions to improve the end-to-end performance. The experimental results show that the proposed hybrid monitoring can provide useful information to coordinate the performance improvement of multi-party real-time media applications.

Viscous Flow Analysis around a Blade Section by a Hybrid Scheme Combining a Panel Method and a CFD Method (패널법과 전산유동해석법의 결합을 이용한 날개단면 주위 점성유동 해석)

  • Oh, Jin-An;Lee, Jin-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.355-363
    • /
    • 2013
  • Panel methods are essential tools for analyzing a fluid-flow problem around complex three dimensional bodies, but they lack ability to solve viscous effects. On the other hand, CFD methods are considered as powerful tools for analyzing fluid-flow characteristics including viscosity. However, they also have short falls, requiring more computing time and showing different results depending on the selection of turbulence models and grid systems. In this paper a hybrid scheme combining a panel method and a CFD method is suggested. The scheme adopts a panel method for far-field solution where viscous effects are negligible and a CFD method for the solution of RANS equations in near-field where viscous effects are relatively strong. The intermediate region between the far-field and near-field is introduced where the calculated field point velocities by the panel method are given as boundary velocities for the CFD method. To verify the scheme, calculated results, by a panel method, a CFD method and the hybrid scheme, for a two dimensional foil section are compared. The suggested hybrid scheme gives reasonable results, while computation time and memory can be dramatically reduced. By using the hybrid scheme efforts can be concentrated for the local flow near the leading and trailing edges, by providing more dense grid system, where detailed flow characteristics are required.

A Buffer Architecture based on Dynamic Mapping table for Write Performance of Solid State Disk (동적 사상 테이블 기반의 버퍼구조를 통한 Solid State Disk의 쓰기 성능 향상)

  • Cho, In-Pyo;Ko, So-Hyang;Yang, Hoon-Mo;Park, Gi-Ho;Kim, Shin-Dug
    • The KIPS Transactions:PartA
    • /
    • v.18A no.4
    • /
    • pp.135-142
    • /
    • 2011
  • This research is to design an effective buffer structure and its management for flash memory based high performance SSDs (Solid State Disks). Specifically conventional SSDs tend to show asymmetrical performance in read and /write operations, in addition to a limited number of erase operations. To minimize the number of erase operations and write latency, the degree of interleaving levels over multiple flash memory chips should be maximized. Thus, to increase the interleaving effect, an effective buffer structure is proposed for the SSD with a hybrid address mapping scheme and super-block management. The proposed buffer operation is designed to provide performance improvement and enhanced flash memory life cycle. Also its management is based on a new selection scheme to determine random and sequential accesses, depending on execution characteristics, and a method to enhance the size of sequential access unit by aggressive merging. Experiments show that a newly developed mapping table under the MBA is more efficient than the basic simple management in terms of maintenance and performance. The overall performance is increased by around 35% in comparison with the basic simple management.

Design of Hybrid Parallel Architecture for Fast IP Lookups (고속 IP Lookup을 위한 병렬적인 하이브리드 구조의 설계)

  • 서대식;윤성철;오재석;강성호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.345-353
    • /
    • 2003
  • When designing network processors or implementing network equipments such as routers are implemented, IP lookup operations cause the major impact on their performance. As the organization of the IP address becomes simpler, the speed of the IP lookup operations can go faster. However, since the efficient management of IP address is inevitable due to the increasing number of network users, the address organization should become more complex. Therefore, for both IPv4(IP version 4) and IPv6(IP version 6), it is the essential fact that IP lookup operations are difficult and tedious. Lots of researcher for improving the performance of IP lookups have been presented, but the good solution has not been came out. Software approach alleviates the memory usage, but at the same time it si slow in terms of searching speed when performing an IP lookup. Hardware approach, on the other hand, is fast, however, it has disadvantages of producing hardware overheads and high memory usage. In this paper, conventional researches on IP lookups are shown and their advantages and disadvantages are explained. In addition, by mixing two representative structures, a new hybrid parallel architecture for fast IP lookups is proposed. The performance evaluation result shows that the proposed architecture provides better performance and lesser memory usage.

MNFS: Design of Mobile Multimedia File System based on NAND FLASH Memory (MNFS : NAND 플래시메모리를 기반으로 하는 모바일 멀티미디어 파일시스템의 설계)

  • Kim, Hyo-Jin;Won, You-Jip;Kim, Yo-Hwan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.11
    • /
    • pp.497-508
    • /
    • 2008
  • Mobile Multimedia File System, MNFS, is a file system which extensively exploits NAND FLASH Memory, Since general Flash file systems does not precisely meet the criteria of mobile devices such as MP3 Player, PMP, Digital Camcorder, MNFS is designed to guarantee the optimal performance of FLASH Memory file system. Among many features MNFS provides, there are three distinguishable characteristics. MNFS guarantees, first, constant response time in sequential write requests of the file system, second, fast file system mounting time, and lastly least memory footprint. MNFS implements four schemes to provide such features, Hybrid mapping scheme to map file system metadata and user data, manipulation of user data allocation to fit allocation unit of file data into allocation unit of NAND FLASH Memory, iBAT (in core only Block Allocation Table) to minimize the metadata, and bottom-up representation of directory. Prototype implementation of MNFS was tested and measured its performance on ARM9 processor and 1Gbit NAND FLASH Memory environment. Its performance was compared with YAFFS, NAND FLASH File system, and FAT file system which use FTL. This enables to observe constant request time for sequential write request. It shows 30 times faster mounting time to YAFFS, and reduces 95% of HEAP memory consumption compared to YAFFS.

Workload-Driven Adaptive Log Block Allocation for Efficient Flash Memory Management (효율적 플래시 메모리 관리를 위한 워크로드 기반의 적응적 로그 블록 할당 기법)

  • Koo, Duck-Hoi;Shin, Dong-Kun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.2
    • /
    • pp.90-102
    • /
    • 2010
  • Flash memory has been widely used as an important storage device for consumer electronics. For the flash memory-based storage systems, FTL (Flash Translation Layer) is used to handle the mapping between a logical page address and a physical page address. Especially, log buffer-based FTLs provide a good performance with small-sized mapping information. In designing the log buffer-based FTL, one important factor is to determine the mapping structure between data blocks and log blocks, called associativity. While previous works use static associativity fixed at the design time, we propose a new log block mapping scheme which adjusts associativity based on the run-time workload. Our proposed scheme improves the I/O performance about 5~16% compared to the static scheme by adjusting the associativity to provide the best performance.