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1. INTRODUCTION

The advantages of the Monte Carlo method for reactor
analysis are well known. Continuous energy Monte Carlo
codes such as MCNP5 [1] are capable in principle of
analyzing reactor configurations with arbitrary geometrical
complexity – limited by the ability of the code (and patience
of the user) to represent arbitrary shapes in a computational
model; and arbitrary physics complexity – limited by the
knowledge of cross sections that describe the physical
phenomena being modeled. In addition to the flexibility
of Monte Carlo to simulate the most complex geometry,
continuous energy Monte Carlo treats neutron energy
dependence correctly with essentially no approximations.
In particular, Monte Carlo makes no "operator split"
approximations in energy which are needed for deterministic
transport in order to determine multigroup cross sections.
Methods that use multigroup cross sections, whether
deterministic or Monte Carlo, have intrinsic errors
associated with the cross section processing due to the crude
spatial model during this step of the overall calculation
sequence. Every step down the path from evaluated cross
section data to few-group cross sections involve trade-
offs between spatial resolution and energy resolution,
formally equivalent to operator splitting back and forth
between space and energy. For example, the complexity

of resonance processing for lattice physics codes is due to
the need to have multigroup cross sections that represent
phenomena on an energy scale far smaller than the width
of the energy group, and this energy dependence depends
on the spatial solution. 

Moreover, previous work has demonstrated that Monte
Carlo methods can be made to run efficiently on most if
not all production computer architectures that have been
introduced to date [2]. So why isn't Monte Carlo the
method of choice for full-core reactor analysis? The
primary reason for this state of affairs is the extreme
computational burden to carry out a full-core Monte Carlo
simulation, including prohibitive computational time and
excessive memory demand. A number of factors contribute
to the computational burden inhibiting full-core Monte
Carlo, including:

• Prohibitive computational time for acceptable statistics
• Excessive demand on computer memory
• Slow convergence of the fission source
• Apparent versus true variance
• Accounting for multiphysics feedback
• Adapting to future computer architectures

These six (not necessarily independent) factors
present challenges for the use of Monte Carlo for full-core
reactor analysis and the remainder of this paper discusses
these challenges and the prospects for overcoming them.

The advantages for using Monte Carlo methods to analyze full-core reactor configurations include essentially exact
representation of geometry and physical phenomena that are important for reactor analysis. But this substantial advantage
comes at a substantial cost because of the computational burden, both in terms of memory demand and computational time.
This paper focuses on the challenges facing full-core Monte Carlo for keff calculations and the prospects for Monte Carlo
becoming a routine tool for reactor analysis.
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There are other challenges facing Monte Carlo such as
uncertainty propagation due to depletion and multiphysics
feedback or the correct treatment of resonance upscattering
or unresolved resonances, but these topics (and others)
are related more to the fidelity of the physics models
rather than computational efficiency and will not be
treated in this paper. However, it should be noted that
computational time for Monte Carlo simulation is generally
proportional to the fidelity of the physics, so it is likely
that improvements in physics fidelity will not improve
Monte Carlo performance although they may improve
Monte Carlo predictions. The remainder of this paper
discusses each of the six challenges, followed by a section
on the development of a 3D full-core benchmark problem
that will enable the measurement of progress towards the
goal of making Monte Carlo a tool for routine design and
analysis of full-core reactor configurations. The paper
concludes with a summary of the challenges and prospects
for achieving full-core Monte Carlo. The review is focused
on full-core keff calculations with Monte Carlo, and does
not address time-dependence or source calculations.  

The following discussion is based on a number of
papers, conference talks, and seminars over the past few
years, including a special session, "Monte Carlo Methods
in Reactor Physics: Current Status and Future Prospects,"
held at the 2011 ANS Summer Meeting [3-6]. 

2. PROHIBITIVE COMPUTATIONAL TIME FOR
ACCEPTABLE STATISTICS

The computational time for Monte Carlo simulation
is proportional to the number of neutron histories needed
to obtain acceptable statistics for local flux/power estimates
and the computational time per history. Using a Monte
Carlo solution for an assembly as a basis, Smith [5]
estimated that 100 billion histories would be needed to
achieve 1% statistics on local power/flux tallies for a
full-core calculation. Given the fact that local statistics
are determined by the track length density and the total
track length is roughly proportional to the size of the
reactor configuration, it is unlikely that anything can be
done to address the number of histories so the reduction
in computational time will need to be accomplished with
parallel processing. The only other recourse for reducing
the computational time is to reduce the computational
time/history, which will occur if progress is made in
meeting the challenges that follow below.    

3. EXCESSIVE DEMAND ON COMPUTER MEMORY

3.1 Estimate of Memory Demand
Monte Carlo simulation requires substantial memory

for tallies, geometry data, and cross section data. Tallies

represent the solution of a Monte Carlo simulation and
sufficient tallies are needed to yield estimates of within-pin
flux/power/isotopic distributions for all the pins in a reactor
core, including radial, azimuthal, and axial dependence.
Depletion is the key phenomenon that drives the number
of tallies. Besides resulting in hundreds of isotopes that
must be tracked and accounted for by the Monte Carlo
analysis, the accurate estimation of isotopics requires
accurate flux and power distributions, thus necessitating
a refined tally mesh. The impact of depletion on the
number of tallies is magnified greatly if one accounts for
the "rim effect" [7] in high burnup UO2 LWR fuel, which
may necessitate tally regions on the order of 100 microns
or less. Moreover, advanced fuel design features such as
IFBA (integral fuel burnable absorber) coatings may require
tally regions on the order of 10 microns or less [8]. The
tally estimates reported in this paper do not account for
either the rim effect or IFBA coatings. 

An estimate of the number of tallies need for full-core
reactor analysis was also given by Smith [5]. He assumed
a reactor core with 70,000 fuel pins with 10 radial and
100 axial meshes per pin, and 300 isotopes to be tracked.
Allowing additional tallies per isotope for both absorption
and fission reactions and for the variance estimation, Smith
estimated 1 TB of memory would be needed, assuming 8
bytes per tally for over 100 billion tallies. This is well
beyond the capacity of current compute nodes, which
tend to be in tens of GB or less, even for multi-core nodes.
A large number of tallies has implications for computational
time as well as memory demand because compute cycles
are needed to store and increment these tallies. The number
of tallies is dictated by the resolution needed for flux/
power/isotopic distributions and is unlikely to be reduced
substantially. 

Despite those extreme demands on memory due to
tallies, there is evidence that progress is being made to
overcome this challenge. The MC21 Monte Carlo code
[9-11], developed as a joint project by the two Naval
Reactors laboratories, Bettis Atomic Power Laboratory
and Knolls Atomic Power Laboratory (KAPL), was
designed from the outset to analyze full-core naval reactor
configurations, including depletion and multiphysics
feedback. A discussion of the performance of MC21 on a
3D full-core benchmark problem [10] will be discussed
towards the end of this paper, but a brief discussion is
given here of the MC21 results relating to the large number
of tallies. The benchmark problem had ~ 7 million distinct
regions where tallies were to be recorded. There were
three tallies per region (energy-integrated flux, absorption
rate, and fission rate) to be accumulated for the benchmark
problem. The additional processing time to process the
tallies for a large run (40 million histories) was less than
10%. When depletion was considered, the number of
tallies increased to 100 billion, but the effect on the
performance of MC21 was negligible for a relatively
small simulation (2.5 million histories). These results, which
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are likely to be updated and improved for PHYSOR12
[11] are very encouraging and indicate that it is possible
for Monte Carlo developers to adapt their algorithms and
methods to ameliorate the memory and computational
burden of the huge number of tallies needed for full-core
reactor analysis with depletion.  

The geometry and cross section data also contribute
to the memory demand. The cross section data increases
sharply when depletion is included, due to the large number
of fission nuclides. Depending on the number of isotopes
that are tracked and the temperature range over which
cross sections are required, the cross section data by itself
may exceed the memory capacity of a single node. When
tallies are included, realistic full-core configurations will
not be possible on single computational nodes, including
multicore nodes with shared memory, for the foreseeable
future. Therefore, some type of decomposition will be
needed to spread the data across multiple nodes. Two
types of decomposition are being pursued – conventional
spatial decomposition and data decomposition.   

3.2 Spatial Decomposition
The conventional spatial decomposition method

assigns spatial regions to specific processor nodes, and
neutrons traveling from one spatial region to another must
be explicitly communicated from one node to the other.
This communication represents parallel overhead and
reduces the parallel efficiency. A variation on spatial
decomposition is overlapping spatial domains [6,12]. The
motivation for overlapping domains was due to analyses
with multiple assemblies where it was found that 76% of
the neutrons born in an assembly exited the assembly but
only 21% exited a domain of width assembly surrounding
the birth assembly. Moreover, less than 5% of the neutrons
exited if the surrounding domain width was a full assembly.
This is illustrated in Figure 1, where neutrons born in the

shaded domain stay with its processor until it leaves the
overlapping domain shown with dashed lines.

A given processor only emits neutrons in its birth
domain but can follow the neutrons into the overlapping
domains. The width of the overlapping domain is a user
option. Conventional spatial decomposition, including
overlapping domains, may be described as static spatial
decomposition because the data is assigned to processor
nodes at run time.

3.3 Data Decomposition
An alternative to spatial domain decomposition is data

decomposition [2]. Here neutrons are emitted in specific
processor nodes and remain in that node until the end of
the current cycle. As a neutrons moves through the problem
geometry, data is served to the processor as needed to
allow the random walk to proceed. This might be described
dynamic spatial decomposition, because region-specific
data is dynamically served to a specific processor node
depending on where the neutron travels. 

Siegel et al. [13] analyze the communication costs for
domain decomposition with an idealized Monte Carlo
simulation that represents a full-core reactor configuration
with non-overlapping domain decomposition. They
concluded that domain decomposition for full-core reactor
configurations results in reasonable ratios of communications
costs to computational work, hence domain decomposition
appears to be a reasonable strategy for addressing the
memory demand for full-core Monte Carlo.  

4. SLOW CONVERGENCE OF THE FISSION
SOURCE

4.1 Power Iteration
The conventional Monte Carlo fission source iteration

is a simple power iteration for the fundamental (largest)
eigenvalue k0 and associated eigenvector ψ0. It is well-
known that the dominant error terms for k0 decay faster
than the dominant error terms for ψ0, especially when the
dominance ratio ρ = k1/k0 is close to 1. For this reason,
the fundamental eigenvalue for a high dominance ratio
problem will appear to converge much faster than the
associated eigenvector, which will be contaminated by
the higher harmonics. Since tallies cannot be accumulated
until the fission source has converged and the active cycles
have begun, slow fission source convergence results in
additional time to solution.

The fission matrix approach [14] has been used to
efficiently accelerate fission source convergence and a
number of papers have been published on this over the
years. This has been shown to reduce the number of inactive
cycles considerably for large core configurations.   

In recent years there has been progress in accelerating
fission source convergence by using hybrid methods, whereFig. 1. Overlapping Domain Decomposition



deterministic transport methods are used to accelerate the
Monte Carlo solution. The reported results for fission
source convergence with hybrid Monte Carlo are based
on using a Shannon entropy diagnostic during the Monte
Carlo solution to assess fission source convergence [15].
There are two distinct types of hybrid methods that have
been successfully used:

• Using weight windows determined by solving the
adjoint transport equation to reduce the variance of
the Monte Carlo solution

• Using a low-order operator (e.g., transport-corrected
diffusion theory) to accelerate the high-order operator
(Monte Carlo) 

4.2 Importance Sampling
The first method is similar to conventional variance

reduction techniques but which have traditionally been
used for source problems, given the conventional wisdom
that global eigenvalue problems do not have a preferred
location for neutrons to travel to, such as estimating dose
at specific points for a source problem. However, Wagner
et al. [6,12] have developed the FW-CADIS (forward
weighted, consistent adjoint driven importance sampling)
method that has shown very promising results for full-
core criticality problems. The FW-CADIS methodology
has been demonstrated to substantially improve the fission
source convergence [12].

4.3 CMFD Acceleration
The second method, the high-order/low-order iteration

scheme, which has been very successful with deterministic
transport methods [5], employs a low order method that
preserves neutron balance over a given "coarse mesh" by
expressing the neutron leakage as a modified diffusion-
like expression with coefficients determined by the transport
(high-order) solution. The following is a notional description
of the method. Defining Jk+1/2 as the normal current at the
surface between cells k and k+1, the following discretized
leakage equation is assumed:

where –Dk+1/2(φk+1 – φk) is a conventional (normalized)
discretization of the neutron current, and  D̂k+1/2(φk+1 + φk)
is a "correction term" that preserves Jk+1/2 by solving for
D̂k+1/2:

The iteration strategy consists of a high-order solution to
determine D̂k+1/2, followed by a low-order solution that
includes Eq.(1) and the current value of  D̂k+1/2. The low-order
solution affects the high-order solution by renormalizing
the high order solutions with the low-order solutions.
This is repeated until convergence is obtained. Known as

the coarse-mesh finite difference (CMFD) method from
its roots in deterministic transport, this technique has
been applied to Monte Carlo simulation by solving an
independent low-order "diffusion" equation that includes
Eq.(1) to couple the "coarse meshes". The low-order solution
is then used to renormalize the fission source, thus nudging
the global shape of the high-order solution in the direction
of the low-order solution. Results reported by Lee et al. [16]
are encouraging.

4.4 Functional Monte Carlo
Alternative approaches for the high-order/low-order

iteration approach have been developed by Larsen, Yang,
and Wolters, et al. [17-20]. Known as functional Monte
Carlo (FMC), the idea is to define an exact low-order
functional with coefficients determined by the high-order
(Monte Carlo) solution. For example, with FMC, the
equivalent equation to Eq.(2) might be:

where Fk+1/2 is identically zero for the transport solution but
has terms that tend to reduce the "noise" in the estimation
of Jk+1/2 with Monte Carlo. The iteration strategy for FMC
is similar to CMFD in that the Monte Carlo solution
estimates the coefficients which are then used to solve
the low-order equations. The low order solution is then
propagated to the high order equation by renormalization
of the fission source. By judicious choice of functionals to
minimize the "noise" in the estimation of these coefficients
with Monte Carlo, significant improvements in fission
source convergence have been observed. Since Eq.(1) is a
functional of the transport equation, the CMFD and FMC
methods are closely related.

Not only do the CMFD and FMC hybrid methods
improve the source convergence, they improve the
estimation of the variance and appear to dampen the
fluctuations in keff and flux/power tallies if the acceleration
is continued during the active cycles [16,20]. However,
there are issues with using acceleration during the active
cycles and this is discussed in the next section.    

5. APPARENT VERSUS TRUE VARIANCE

The conventional fission source iteration for Monte
Carlo criticality calculations is a sequence of "cycles",
where the starting locations for the neutrons in cycle n
are determined by the fission sites from cycle n-1. This
induces an inter-cycle correlation that is stronger for high
dominance ratio problems. This correlation does not
affect the estimates of keff or the tallies, but it does affect
the estimation of the variance in these quantities. Since
the correlation is positive, this will result in an under-
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estimate of the variance if the correlation is not accounted
for. Ueki [21] introduced the term apparent variance,
which is the expected value of the sample variance of the
mean, and derived an expression for the bias in the apparent
variance, which is simply the difference between the true
variance and the apparent variance. This has been a
longstanding problem [21-26] for two decades but more
attention has been placed on this issue in recent years as
numerous groups continue to develop and enhance their
Monte Carlo codes for full core analysis. Brown [25,26]
reported ratios of real to apparent standard deviations in
assembly powers (2D full core PWR) that approached a
factor of 5. Shim et al. [24] developed practical methods
to estimate the true variance using a single Monte Carlo
simulation. Lee et al. [16] reported results consistent with
Brown for a 2D full core configuration, with ratios of real
to apparent standard deviations in the range of 2-3. They
estimated the true variance by internally partitioning the
Monte Carlo simulation into 25 independent simulations
and performing independent eigenvalue calculations for
each of these runs.

Another study that supports the conclusion that the
variance is under-estimated due to intercycle correlations
are the results with MC21 reported by Kelly et al. [10].
In a thorough study that offers compelling evidence of
variance underestimation and its cause, [10] presents results
of an exhaustive series of Monte Carlo simulations of a
3D full-core benchmark problem that will be described
later in this paper. By examining an ensemble of 120,000
tallies and their associated chi-square distributions for the
sample variance estimated with 10 independent runs of
4M histories versus one run with 40M histories, they
concluded that the variance estimated for a single Monte
Carlo run was underestimated by a factor of .7, which is
equivalent to the confidence intervals being too small by
about 15%. To address this issue, the "batching" method
has been examined with MC21 [11]. This method,
suggested two decades ago by Gelbard and Prael [22],
combines successive generations into batches and tallies
are accumulated for these batches rather than for generations.
The idea is that batches of generations will not be as
correlated as generations. Preliminary results indicate this
method works very well to remove the bias in the apparent
variance [11].

The issue of under-predicting the variance takes an
interesting twist when hybrid methods are used to accelerate
the Monte Carlo simulation. Lee et al. [16], with the CMFD
Monte Carlo method, and Wolters, et al. [20], who
developed an alternative version of the FMC method of
Larsen and Yang [17-19], noticed that the apparent
variance was a better estimate of the true variance when
CMFD or FMC were used to accelerate the Monte Carlo.
In addition, it was found by both groups that the fluctuations
in estimates of keff and flux/power tallies were considerably
reduced when CMFD or FMC were employed during the
active cycles. It appears that the renormalization of the

fission source with the low-order solution helped to "pin"
the eigenvector to the fundamental mode and minimize
wobbling in the solution due to statistical fluctuations
from one cycle to the next. This observation raises a red
flag for Monte Carlo specialists because the active cycles
are not independent and identically distributed (IID)
samples, due to the fact that the low-order solution is
modifying the fission source distribution in a different
manner for every active cycle. This implies that error
estimates based on the central limit theorem (irrespective
of intercycle correlations) are not valid. The approach taken
by Lee et al. [16] to partition the Monte Carlo simulation
into independent runs would address this problem and
allow one to assess the bias in the estimate of the variance
using FMC or CMFD during the active cycles.

Finally, it should be noted that the implementation of
the Wielandt method to the Monte Carlo power iteration
method has been shown to reduce the under-prediction
bias [27-28] and could be used to estimate more accurate
variances. 

6. ACCOUNTING FOR MULTIPHYSICS FEEDBACK

Coupling Monte Carlo neutronics to other physics
modules such as thermal-hydraulics presents the following
issues: 

• Fluctuations
• Histogram solutions 
• Temperature-dependent neutron cross-sections

Each of these issues is briefly discussed below with
suggestions for resolution. 

6.1 Fluctuations
Fluctuations are an inherent feature of Monte Carlo and

cannot be eliminated. However, the analyst can reduce
the fluctuations to arbitrarily small amounts by increasing
the number of histories or using variance reduction
techniques, or hybrid methods, to reduce the variance.
One guideline for statistical resolution is the 1% criteria
for local fluxes and powers over regions that are small
enough to resolve important phenomena such as isotopic
buildup/depletion or Doppler feedback. 

An unanswered question is the extent to which statistical
error will affect the convergence of the multiphysics
feedback iteration. For example, Betzler et al. reports [29]
results with temperature feedback (coupled MCNP5 and
RELAP5 [30]) for the Fort St. Vrain high temperature gas
reactor. For this application, the batch size had to be
increased (compared to a case with a specified temperature
distribution) by a factor of 5 (from 50,000 to 250,000
histories/batch) to converge the temperature feedback.
The impact of statistical error on multiphysics feedback
may be stronger with the modern coupling methods such
as Jacobian-free Newton-Krylov (JFNK) [31-32] if the
residual has to be explicitly estimated with Monte Carlo.
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The uncertainty in this quantity may be substantial even
if all the tallies are converged to 1%. However, hybrid
methods may mitigate this issue because the multiphysics
feedback can be applied to the low-order deterministic
solution, which can then communicate the feedback to
the Monte Carlo solution during the high-order/low-order
iterations. Although the low-order solution will see some
fluctuations, experience with hybrid methods indicates they
are considerably diminished compared to a conventional
Monte Carlo solution.   

6.2 Histogram Solutions
Coupling discontinuous Monte Carlo results on a

tally mesh to a continuum physics model described by a
partial differential equation (PDE) may present some
difficulties. While interfaces can handle discontinuities,
the Monte Carlo discontinuities are an artifact of the fact
that conventional tallies are histograms, even in regions
that are homogeneous. Recent advances in developing
continuous Monte Carlo tallies may address this issue.
The functional expansion technique (FET) developed by
Griesheimer [33] or the kernel density estimator (KDE)
recently applied by Banerjee to reactor analysis [34,35]
are two methods that allow continuous tallies. The KDE
tally has the advantage that it is mesh-free, so can in
principle adapt to any multiphysics mesh.       

6.3 Temperature-dependent Neutron Cross-sections
Neutron cross sections are sensitive functions of

temperature and need to be available for any temperature
encountered throughout the reactor core. Typically, a
cross-section processing code such as NJOY [36] will
generate a cross section set for a given isotope at a given
temperature and a Monte Carlo code will then use this
cross section dataset when the region temperature equals
the cross section dataset temperature. There are a number
of ways to address this challenge: 

• In-line cross sections at the correct temperature. Generate
cross sections with an "in-line" cross section processing
routine (e.g., run NJOY) at the exact temperature of
the region. This option would be accurate but is not a
serious alternative because of the prohibitive computing
time to run NJOY for all the different temperatures
and isotopes encountered in the core.

• Pre-generate the cross sections on a fine temperature
mesh. Pre-generate cross sections on a relatively fine
temperature mesh (e.g., 5 K) to cover the temperature
range of interest and use the dataset generated at the
closest temperature. Trumbull [37] has shown that cross
sections may be required at 5 K or 10 K temperature
increments in order to resolve the temperature effects
without significant truncation error due to having
cross sections at the wrong temperature. Since a
temperature feedback calculation for an operating
reactor may require temperatures ranging from room

temperature to 2000 K or more, this could mean ~200
temperatures for each isotope, which when multiplied
by the number of isotopes (~300) will easily overwhelm
the memory available to a computational node. 

• Pre-generate the cross sections on a coarse temperature
mesh. Pre-generate cross sections on a relatively coarse
temperature mesh (e.g, 50 K) to cover the temperature
range of interest but obtain the actual cross sections
at the region temperature by interpolating between the
datasets at the temperatures that bound the temperature
of interest. Conlin et al. [38] developed a "pseudo-
material construct" where the same isotope at two
different temperatures could be "mixed" to form an
MCNP5 material that had weights as number densities,
and the weights were simply the interpolation parameters
for a √

T interpolation between the bounding dataset
temperatures. The advantage of this approach is no
changes are required to the MCNP5 code because the
input processor handled the actual mixing with the
interpolation weights. Since MCNP5 will decide
statistically which nuclide to collide with, this method
is equivalent to statistical interpolation between the
two bounding datasets.  

• "On-the-Fly" (OTF) Doppler broadening. Use "On-the-
Fly" (OTF) Doppler broadened cross sections that are
retrieved during the random walk from a regression
model at the exact region temperature and neutron
energy. The OTF Doppler broadening method was
developed by Yesilyurt et al. [39]. In essence, the Monte
Carlo code only needs to store 0 K cross sections for
each isotope and the method will broaden the 0 K cross
sections for any isotope in the library to any temperature
in the range 77 K-3200 K for all incoming neutron
energies up to 20 MeV or the unresolved resonance
range. The methodology is based on a combination of
Taylor series expansions and asymptotic series
expansions. The comparison of the broadened cross
sections using this methodology with the NJOY cross
sections was excellent over the entire temperature (77
K-3200 K) and energy ranges. The computational
overhead to utilize OTF cross sections is manageable,
since it only involves the evaluation of a 13 term
expansion. OTF Doppler broadening has the potential
to both remove the cross section data as a significant
demand on memory and eliminate temperature
resolution of cross section datasets as a source of
error for temperature feedback calculations. Effort is
underway to incorporate OTF capability into MCNP5
and preliminary results are encouraging [40]. The
success of OTF Doppler broadening will allow the
analyst to account for temperature changes within a
fuel pin to any level desired, although fine resolution
may result in a prohibitive material and tally mesh since
the material region will need a unique temperature
assigned to it and the effect of temperature changes
will affect the isotopics. 



7. ADAPTING TO FUTURE COMPUTER
ARCHITECTURES

Brown [2] recently summarized the status of Monte
Carlo for advanced computers and presented a thorough
discussion of the prospects for Monte Carlo on advanced
computers including cell processors, graphical processing
units (GPUs), general purpose GPUs, and greater than
massively parallel architectures (e.g., millions of cores)
that will be needed to achieve EXAFLOPS performance
(1018 floating point operations per second). The following
is a brief discussion of the issues but [2] should be referred
to for a full discussion of the impact of advanced computer
architectures on Monte Carlo performance.

To stay on the performance curve predicted by Moore’s
Law and adhered to by the computer industry over the
past three decades, Monte Carlo codes must be adapted
to run efficiently on new architectures. To date, Monte
Carlo scales well on all production architectures that have
been offered, including vector processors, vector-parallel
architectures, massively parallel SIMD (single instruction
multiple data) architectures, hypercube parallel architectures,
Linux clusters, etc. For example, the MCNP5 code is
parallelized with threads within a node (OpenMP) and
message-passing (MPI) between nodes. However, the
fact that Monte Carlo can be adapted to almost any
architecture does not mean this will be easy. The physics
for Monte Carlo particle transport implies that histories
are independent within a fission source cycle or within a
time step. Parallelizing across particle histories is natural
and allows efficient load balancing (statistical) without a
priori knowledge of the solution. However, for vector
architectures, the history-based random walk algorithm
must be turned inside out because the vectorized algorithm
parallelizes across particle events (e.g., tracking, collision
analysis) and histories are chopped up into segments
corresponding to the events. Radical restructuring of the
code data structures and the overall algorithm are
required for a vectorized algorithm. The MVP code [41]
is the only publicly available vectorized Monte Carlo code
for particle transport, which in itself may indicate the
difficulty of developing or adapting Monte Carlo codes
for a vector architecture.  

The high-end computing community is dependent on
the commercial development of computers for the game
and transactions industries because the market for high
performance computing (HPC) is too small to support
new computer architectures for the HPC community. Right
now the trends seem to be in two directions – GPGPUs
and multicore nodes. Both of these architectural trends may
allow peak computer performance to continue to increase;
however, the practical efficiency of these alternatives (e.g.,
turnaround time for a full-core Monte Carlo simulation)
may be quite different. It is likely that production Monte
Carlo codes will have considerable difficulty in adapting
to GPGPUs but multicore architectures, while challenging

with large numbers of cores, allow a programming model
similar to today's computers.

8. MEASURING PROGRESS TOWARDS ACHIEVING
FULL-CORE MONTE CARLO

In order to assess progress towards achieving full-
core Monte Carlo, a benchmark problem was developed
by Hoogenboom et al. [42] to measure Monte Carlo
performance for a realistic 3D reactor configuration. The
specifications for the benchmark problem are available at
the Nuclear Energy Agency (NEA) website. The NEA
website allows the analyst to upload their results for the
benchmark problem and this will allow for convenient
intercomparison of results. The NEA Monte Carlo
benchmark problem is a revision of the problem originally
proposed by Hoogenboom and Martin at the 2009 M&C
Conference in Saratoga Springs [43], and this was based
on talks by Smith at the 2003 Gatlinburg M&C Conference
[44] and Martin at the 2007 Monterey M&C Conference
[45]. The benchmark configuration is representative of a
3D PWR with explicit fuel pins and a mixture of fuel and
burnable poison pins. The key requirement of the benchmark
exercise is the prediction of local powers with 1% relative
errors. Depletion is not included in this version of the NEA
benchmark problem. 

Hoogenboom et al. [46] presented a detailed analysis
of the results reported by Kelly et al. [10] at PHYSOR10
and the results reported by Leppänen at SNA+MC2010
in Tokyo [47]. Both efforts are approaching the criterion
of 1% relative errors on all local power densities but the run
times are well in excess of the 1 hour criterion suggested
by Smith [44]. Brief summaries are given below; the reader
should consult the original reports for details:

• Kelly et al. [10] reported results which indicated that
95% of the tallies had standard deviations less than
3% for 10 billion histories. The wall clock time was
18 hours on 400 cores. 

• Leppänen [47] reported that 90% of the local powers
had standard deviations less than 2% for 100 billion
histories. The wall clock time was 21 hours on 7 CPUs. 
These results are encouraging and indicate that it may

not be long before a Monte Carlo code simulates the NEA
benchmark problem on a cluster and achieves 1% statistics
within 1 hour wall clock time. In fact, Sutton [11] hints
that MC21 will report substantially improved results at
PHYSOR12. 

9. SUMMARY AND CONCLUSIONS

The challenges and prospects for full-core Monte Carlo
are summarized below. 

• Prohibitive computational time for acceptable statistics
– this will be met by faster and cheaper multicore nodes,
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algorithmic advances with hybrid Monte Carlo methods,
and innovative variance reduction methods. The fact
there is a benchmark problem specifically focused on
Monte Carlo performance will encourage progress in
this area. 

• Excessive demand on computer memory – this will
be addressed by innovative decomposition schemes
and the increasing memory capacity of multicore nodes
and decreasing cost of memory.

• Slow convergence of the fission source – this has been
successfully addressed with CMFD and FMC methods.
However, improving the fission source convergence
simply moves the problem to the active cycles, since
there have to be enough to obtain satisfactory statistics
(eg., 1% on local powers). 

• Apparent versus true variance – multiple realizations
provide assurance that the estimated variance is correct
but more analysis is needed to allow valid variance
estimation with a single Monte Carlo simulation when
CMFD/FMC is turned on during the active cycles to
pin down the fission source. Recent results with MC21
[11] indicate that the batching method of Prael and
Gelbard [22] may remedy this problem.

• Accounting for multiphysics feedback – more analysis
and studies are needed to understand the impact of
statistical errors on convergence with multiphysics
feedback. This area is just beginning to be explored.
The use of OTF Doppler broadening is a potential
game changer for cross section generation for Monte
Carlo codes. 

• Adapting to future computer architectures – this is
perhaps the most uncertain challenge. The direction
that computer architectures take is dependent on
where the gaming and transaction industries go. In
general, a trend to larger multicore nodes would be
acceptable but a trend to GPUs would be challenging
for production Monte Carlo codes.

• Progress towards full-core Monte Carlo – the results
that have already been reported [10,47] are very
promising and there is reason to believe that results
reported at PHYSOR12 will continue in the direction
of achieving the 1% relative standard error within 1
hour wall clock time. It appears that the 1% error
criterion will soon be satisfied since both [10] and
[47] could achieve this without prohibitive increase
in the number of histories. However, the one hour
wall clock criterion will be harder to meet and may
require a cluster with thousands of cores. Whether
this meets the spirit of the original "Kord Smith
Challenge" will be a topic of lively discussion. It may
be useful to consider extensions or new benchmark
problems to account for depletion, to assess source
convergence, and to estimate the true variance.   

ACKNOWLEDGEMENTS
This review paper is focused on the challenges and

prospects for achieving full-core Monte Carlo and is not
intended to be an exhaustive survey of Monte Carlo
methods development. It is based on an invited talk
presented at the workshop on "Current Status and Future
of the Nuclear Data, Reactor Physics and Computational
Science” that was embedded in the 2011 Autumn Meeting
of the Korean Nuclear Society October 26-29, 2011.
Special thanks are given to the workshop chairman Dr.
Jae Man Noh for the invitation to present the lecture and
to Professor Han Gyu Joo for his hospitality and assistance
during the trip to Korea. 

REFERENCES_______________________________
[  1  ] X-5 Monte Carlo Team, “MCNP – A General N-Particle

Transport Code, Version 5 – Volume I: Overview and
Theory,” LA-UR-03-1987, Los Alamos National Laboratory
(April, 2003). 

[  2  ] F. B. Brown, "Recent Advances and Future Prospects for
Monte Carlo," Proc. Joint International Conference on
Supercomputing in Nuclear Applications and Monte Carlo
2010 (SNA + MC2010), Tokyo, Japan, October 17-21, 2010.

[  3  ] F. B. Brown "Monte Carlo Methods in Reactor Physics:
Current Status & Future Prospects," presented at the M&C
Division Computational Roundtable, American Nuclear
Society Summer Meeting, Hollywood, FL, June 27, 2011.

[  4  ] D. Griesheimer "Monte Carlo Methods in Reactor Physics:
Current Status and Future Prospects - In-Line Feedback
Effects," presented at the M&C Division Computational
Roundtable, American Nuclear Society Summer Meeting,
Hollywood, FL, June 27, 2011.

[  5  ] K. Smith "Monte Carlo for Practical LWR Analysis: what’s
needed to get to the goal?, " presented at the M&C Division
Computational Roundtable, American Nuclear Society
Summer Meeting, Hollywood, FL, June 27, 2011. 

[  6  ] J. Wagner "Hybrid and Parallel Domain-Decomposition
Methods Development to Enable Monte Carlo for Reactor
Analyses," presented at the M&C Division Computational
Roundtable, American Nuclear Society Summer Meeting,
Hollywood, FL, June 27, 2011.

[  7  ] Hj. Matzke, "On the rim effect in high burnup UO2 LWR
fuels," J. Nucl. Materials, 189, 141-148 (1992). 

[  8  ] M. Rosa, J. S. Warsa, J. H. Chang, and R. S. Baker, "Discrete
Ordinate Calculation of the k-Eigenvalue of an IFBA Pin
Using Unstructured Meshes in 2D," to be presented at the
Summer Meeting of the American Nuclear Society, Chicago,
June 2012.

[  9  ] T. M. Sutton, T. J. Donovan, T. H. Trumbull, P. S. Dobreff,
E. Caro, D. P. Griesheimer, L. J. Tyburski, D. C. Carpenter,
and H. Joo, “The MC21 Monte Carlo Transport Code,” Proc.
ANS Mathematics & Computation Division Topical
Meeting, M&C2007, Monterey, CA, USA, April 2007.

[ 10 ] D. J. Kelly, T. M. Sutton, T. H. Trumbull, and P. S. Dobreff,
"MC21 Monte Carlo Analysis of the Hoogenboom-Martin
Full-Core PWR Benchmark Problem," Proc. ANS Reactor
Physics Division Topical Meeting, PHYSOR10, Pittsburgh,
May 2010. 

[ 11 ] T. Sutton, "Progress in Monte Carlo for Reactor Design
and Analysis," presentation at the University of Michigan,
October 6, 2011.

[ 12 ] J. C. Wagner, D. E. Peplow, S. W. Mosher, and T. M. Evans,

158 NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.44  NO.2  MARCH 2012

WILLIAM R. MARTIN  Challenges and Prospects for Whole-core Monte Carlo Analysis



"Review of Hybrid (Deterministic/Monte Carlo) Radiation
Transport Methods, Codes, and Applications at Oak Ridge
National Laboratory," Proc. Joint International Conference
on Supercomputing in Nuclear Applications and Monte
Carlo 2010 (SNA + MC2010), Tokyo, Japan, October 17-
21, 2010. 

[ 13 ] A. Siegel, K. Smith, P. Fischer, and V. Mahadevan, "Analysis
of Communication Costs for Domain Decomposed Monte
Carlo Methods in Nuclear Reactor Analysis," accepted for
publication, J. Comp. Phys. (December 2011), http://dx. doi.
org/10. 1016/j. jcp. 2011. 12. 014. 

[ 14 ] T. Kitada and T. Takeda, “Effective Convergence of Fission
Source Distribution in Monte Carlo Simulation,” J. Nucl.
Sci. Technol., 38, 324-329 (2001). 

[ 15 ] T. Ueki and F. B. Brown, “Stationarity Modeling and
Informatics-Based Diagnostics in Monte Carlo Criticality
Calculations,” Nucl. Sci. Eng., 149, 38-50 (2005).

[ 16 ] M. -J. Lee, H. G. Joo, D. Lee, and K. Smith, "Multigroup
Monte Carlo Reactor Calculation with Coarse Mesh Finite
Difference Formulation for Real Variance Reduction,"
Proc. Joint International Conference on Supercomputing
in Nuclear Applications and Monte Carlo 2010 (SNA +
MC2010), Tokyo, Japan, October 17-21, 2010.

[ 17 ] E. W. Larsen and J. Yang “A Functional Monte Carlo
Method for k-Eigenvalue Problems,” Nucl. Sci. Eng., 159,
107–126 (2008). 

[ 18 ] J. Yang and E. W. Larsen, “Application of the ‘Functional
Monte Carlo’ Method to Estimate Continuous Energy k-
Eigenvalues and Eigenfunctions,” Proc. ANS Mathematics
& Computation Division Topical Meeting, M&C2009,
Saratoga Springs, New York, USA, 2009. 

[ 19 ] J. Yang and E. W. Larsen, “Calculation of k-Eigenvalues
and Multi-Group Eigenfunctions Using the Hybrid
‘Functional Monte Carlo’ Method,” Proc. ANS Reactor
Physics Division Topical Meeting, PHYSOR10, Pittsburgh,
May 2010.

[ 20 ] E. R. Wolters, E. W. Larsen, and W. R. Martin, “Generalized
Hybrid Monte Carlo – CMFD Methods for Fission Source
Convergence,” Proc. ANS Mathematics & Computation
Division Topical Meeting, M&C2011, Rio de Janeiro,
Brazil, May 8-12, 2011. 

[ 21 ] T. Ueki, T. Mori, and M. Nakagawa, “Error Estimation
and their Biases in Monte Carlo Eigenvalue Calculations,”
Nucl. Sci. Eng., 125, 1-11 (1997). 

[ 22 ] E. M. Gelbard and R. Prael, “Computation of Standard
Deviations in Eigenvalue Calculations,” Prog. Nucl. Energy,
24, 237 (1990). 

[ 23 ] T. Ueki, "Intergenerational Correlation in Monte Carlo k-
Eigenvalue Calculation," Nucl. Sci. Eng., 141, 101–110 (2002). 

[ 24 ] H. J. Shim, Y. Kim, and C. H. Kim, History-Based Batch
Method for a Real Variance Estimation in Monte Carlo
Eigenvalue Calculations, Trans. Am. Nucl. Soc., 100, 300
(2009). 

[ 25 ] F. B. Brown, "A Review of Monte Carlo Criticality
Calculations – Convergence, Bias, Statistics," Proc. ANS
Mathematics & Computation Division Topical Meeting,
M&C2009, Saratoga Springs, NY, May 3-7, 2009. 

[ 26 ] F. B. Brown, "K-Effective of the World and other Concerns
for Monte Carlo Eigenvalue Problems," Proc. Joint
International Conference on Supercomputing in Nuclear
Applications and Monte Carlo 2010 (SNA + MC2010),

Tokyo, Japan, May 3-7, 2009. 
[ 27 ] B. C. Kiedrowski and F. B. Brown, "Using Wielandt’s

method to eliminate confidence interval under prediction
bias in MCNP5 criticality calculations," Trans. Am. Nucl.
Soc., 99, 338-340 (2008). 

[ 28 ] H. J. Shim and C. H. Kim, “Tally Efficiency Analysis for
Monte Carlo Wielandt Method,” Ann. Nucl. Eng., 36,
1694-1701 (2009).

[ 29 ] B. R. Betzler, E. E. Sunny, J. C. Lee, and W. R. Martin,
“Coupled Nuclear-Thermal- Hydraulic Calculations for Fort
St. Vrain Reactor,” Proc. 14th International Topical Meeting
on Nuclear Reactor Thermal-Hydraulics (NURETH-14),
Toronto, Canada, September 25-29, 2011.

[ 30 ] RELAP5-3D Code Development Team, “ATHENA Code
Manual,” INEEL-EXT-98-00834, Rev. 2. 2, Idaho National
Engineering and Environmental Laboratory (2003). 

[ 31 ] D. A. Knoll and D. E. Keyes, “Jacobian-free Newton-Krylov
methods: a survey of approaches and applications,” J. Comp.
Phys., 193, pp. 357-397 (2004).

[ 32 ] H. Park, D. A. Knoll, D. R. Gaston, and R. C. Martineau,
"Tightly Coupled Multiphysics Algorithms for Pebble Bed
Reactors," Nucl. Sci. Eng., 166, 118–133 (2010). 

[ 33 ] D. P. Griesheimer, W. R. Martin, and J. P. Holloway,
"Convergence Properties of Monte Carlo Functional
Expansion Tallies," J. Comp. Phys., 211, 129-153 (January
2006). 

[ 34 ] K. Banerjee and W. R. Martin, “Kernel Density Estimated
Monte Carlo Global Flux Tallies,” Proc. ANS Mathematics
& Computation Division Topical Meeting, M&C2009,
Saratoga Springs, NY, May 3-7, 2009.

[ 35 ] K. Banerjee and W. R. Martin, “Kernel Density Estimation
Method for Monte Carlo Global Flux Tallies,” accepted for
publication, Nucl. Sci. Eng. (2011).

[ 36 ] R. E. MacFarlane and D. W. Muir, "NJOY99.0 Code System
for Producing Pointwise and Multigroup Neutron and Photon
Cross Sections from ENDF/B Data," PSR-480/NJOY99.00,
Los Alamos National Laboratory, Los Alamos (1999).

[ 37 ] T. H. Trumbull, “Treatment of Nuclear Data for Transport
Problems Containing Detailed Temperature Distributions,
” Nucl. Technol., 156, 75-86 (2006).

[ 38 ] J. L. Conlin, W. Ji, J. C. Lee, and W. R. Martin, "Pseudo
Material Construct for Coupled Neutronic-Thermal-Hydraulic
Analysis of VHTGR," Trans. Am. Nucl. Soc., 92, 225-227,
San Diego, CA (June, 2005).

[ 39 ] G. Yesilyurt, W. R. Martin, and F. B. Brown, “On-the-Fly
Doppler Broadening for Monte Carlo Codes,” accepted for
publication, Nucl. Sci. Eng. (2011).

[ 40 ] F. B. Brown, W. R. Martin, G. Yesilyurt, and S. Wilderman,
"Progress with On-The-Fly Neutron Doppler Broadening
in MCNP," to be presented at the Summer Meeting of the
American Nuclear Society, Chicago, June 2012. Also LA-
UR-12-00423, Los Alamos National Laboratory (2012).

[ 41 ] Y. Nagaya, K. Okumura, T. Mori, and M. Nakagawa,
"MVP/GMVP II: General Purpose Monte Carlo Codes for
Neutron and Photon Transport Calculations based on
Continuous Energy and Multigroup Methods, " JAERI
1348 (2004).

[ 42 ] J. E. Hoogenboom, W. R. Martin, and B. Petrovic, “Monte
Carlo Performance Benchmark for Detailed Power Density
Calculation in a Full Size Reactor Core,” Benchmark
Specifications Revision 1. 1, http://www. nea. fr/dbprog/

159NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.44  NO.2  MARCH 2012

WILLIAM R. MARTIN  Challenges and Prospects for Whole-core Monte Carlo Analysis



MonteCarloPerformanceBenchmark. htm (2010).
[ 43 ] J. E. Hoogenboom and W. R. Martin, “A Proposal for a

Benchmark to Monitor the Performance of Detailed Monte
Carlo Calculation of Power Densities in a Full Size Reactor
Core, ” Proc. ANS Mathematics & Computation Division
Topical Meeting, M&C2009, Saratoga Springs, NY, May
3-7, 2009.

[ 44 ] K. Smith, “Reactor Core Methods,” Invited lecture, ANS
Mathematics & Computation Division Topical Meeting,
M&C2003, Gatlinburg, TN, USA, April 2003. URL: http:
//www.nea.fr/html/dbprog/documents/ MC03Smith.pdf.

[ 45 ] W. R. Martin “Advances in Monte Carlo Methods for Global
Reactor Analysis,” Invited lecture, ANS Mathematics &

Computation Division Topical Meeting, M&C2007,
Monterey, CA, USA, April 2007. URL: http://www.nea.fr/
html/dbprog/documents/M&C07Martin.pdf. 

[ 46 ] J. E. Hoogenboom, W. R. Martin, and B. Petrovic, “The
Monte Carlo Performance Benchmark Test – Aims,
Specifications, and First Results,” Proc. ANS Mathematics
& Computation Division Topical Meeting, M&C2011, Rio
de Janeiro, Brazil, May 8-12, 2011.

[ 47 ] J. Leppänen “Use of the Serpent Monte Carlo Reactor
Physics Code for Full-Core Calculations” Proc. Joint
International Conference on Supercomputing in Nuclear
Applications and Monte Carlo 2010 (SNA + MC2010),
Tokyo, Japan, October 17-21, 2010.

160 NUCLEAR ENGINEERING AND TECHNOLOGY,  VOL.44  NO.2  MARCH 2012

WILLIAM R. MARTIN  Challenges and Prospects for Whole-core Monte Carlo Analysis


