• Title/Summary/Keyword: Hybrid generator

Search Result 259, Processing Time 0.039 seconds

Development of Evaluation Method for Transmission Marginal Loss Factors Considering the Electrical Distance (전기적인 거리를 고려한 한계송전손실계수 산정 방법론 개발)

  • Park, Jong-Bae;Lee, Ki-Song;Lee, Chan-Joo;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.488-490
    • /
    • 2003
  • This paprer presents the evlauation method for transmission marginal loss factors(MLFs) considering the electrical distance. Generally, MLFs are represented as the sensitivity of transmission losses, which is computed from the change of generation by the change of the load. MLFs are classified as load-focused MLFs and generator-focused MLFs. The existing evaluation method for generator focused MLFs has the limit not reflecting the characteristic of power systems since the method has been introduced the assumption which the output of a generator is supplied to all of the load buses on the power system. Therefore, to overcome the limit of evaluation method for generator-focused MLFs, we have applied the process, which it approximately can find the load buses that supplied a generator to the method. We have applied the proposed method to the simple 5-bus system because the proposed method is not analytic but the hybrid method incorporated the Kirschen and Bialek's algorithm to the existing analytic method to find the load buses supplied by a generator.

  • PDF

Hybridization of the Energy Generator and Storage Device for Self-Powered Electronics (자가구동형 전자소자 구현을 위한 에너지 발전/저장 소자 융합 기술 동향)

  • Lee, Ju-Hyuck
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.68-79
    • /
    • 2018
  • Currently, hybridization of energy generator and storage devices is considered to be one of the most important energy-related technologies due to the possibility of replacing batteries or extending the lifetime of a batteries in accordance with increasing battery demand. This review aims to describe current progress on the mechanical energy generator and hybridization of energy generator and energy storage devices for self-powered electronics. First, the research trends related to energy generation devices using piezoelectric and triboelectric effect that convert physical energy into electric energy is introduced. In addition, integration of energy generators and energy storage devices is introduced. In particular, self-charging energy cells provide an innovative approach to the direct conversion of mechanical energy into electrochemical energy to decrease energy conversion loss.

Optimization of Stand-Alone Hybrid Power Systems Using HOMER Program (HOMER 프로그램을 이용한 독립형 하이브리드 발전시스템 최적화)

  • Yang, Su-Hyung;Boo, Chang-Jin;Kim, Ho-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.11-18
    • /
    • 2012
  • Diesel fuel is expensive because transportation to remote areas adds extra cost, and it causes air pollution by engine exhaust. Providing a feasible economical and environmental solution to diesel generators is important. A hybrid system of renewable plants and diesel generators can benefit islands or other isolated communities and increase fuel savings. Renewable energy is, however, a natural source that produces a fluctuating power output. In this paper, hybrid power system of the marado lighthouse is proposed to supply stable power in the stand-alone hybrid power system. The proposed hybrid power system consists of the diesel generator, wind turbine, photovoltaic, fuel cell, and battery bank. To decrease the carbon emissions and find the optimization, the cost analysis of hybrid system is simulated using HOMER program and the optimized hybrid power system is designed.

The Development of a Motor and Controller for Hybrid System (하이브리드 시스템용 모터 및 제어기 개발)

  • Ha, Hoi-Doo;Park, Jung-Woo;Kim, Jong-Moo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.231-233
    • /
    • 1995
  • The new hybrid scheme for electric bus is presented in this paper. This system is composed of a three-phase AC induction motor, one inveter and one system controller. The motor can be acted as starter, motor itself, alternator, generator and retarder. Various functions are simulated. The design stage has been finished. And the various experimental tests are undertaken now.

  • PDF

Hybrid Reference Function for Stable Stepwise Inertial Control of a Doubly-Fed Induction Generator

  • Yang, Dejian;Lee, Jinsik;Hur, Kyeon;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.86-92
    • /
    • 2016
  • Upon detecting a frequency event in a power system, the stepwise inertial control (SIC) of a wind turbine generator (WTG) instantly increases the power output for a preset period so as to arrest the frequency drop. Afterwards, SIC rapidly reduces the WTG output to avert over-deceleration (OD). However, such a rapid output reduction may act as a power deficit in the power system, and thereby cause a second frequency dip. In this paper, a hybrid reference function for the stable SIC of a doubly-fed induction generator is proposed to prevent OD while improving the frequency nadir (FN). To achieve this objective, a reference function is separately defined prior to and after the FN. In order to improve the FN when an event is detected, the reference is instantly increased by a constant and then maintained until the FN. This constant is determined by considering the power margin and available kinetic energy. To prevent OD, the reference decays with the rotor speed after the FN. The performance of the proposed scheme was validated under various wind speed conditions and wind power penetration levels using an EMTP-RV simulator. The results clearly demonstrate that the scheme successfully prevents OD while improving the FN at different wind conditions and wind power penetration levels. Furthermore, the scheme is adaptive to the size of a frequency event.

Performance analysis for the Characteristics of Double/ Single Effect Hybrid type Absorption Chiller (일중/이중효용 하이브리드 타입 흡수식 냉동기 성능 특성에 관한 수치적 연구)

  • You, Da-Young;Song, Tae-Min;Lee, Jung-Byoung;Kim, Hyung-Jin;Im, Ick-Tae;Moon, Sang-Done;Park, Chan-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.272-278
    • /
    • 2009
  • The characteristics of hybrid type absorption chiller are studied numerically to use a waste hot water effectively. In the case of the full load, the concentration and temperature of LiBr solution are increase about $11^{\circ}C$, 1.3% respectively at the single effect generator by hot water. As a result, the heat of the high temperature generator are decrease, so the energy can be saved. As the partial load decreased the consumption ratio of fuels are decreased and the reduction ratio of fuels are increased. The variation of COP with the inlet temperature of hot water is higher than that of the flow rate of hot water. The effect of mean temperature difference with solution and hot water of the generator are higher that of flow rate of hot water, it can effect on COP which is sensitive to heat of generator.

  • PDF

Hybrid Differential Evolution Technique for Economic Dispatch Problems

  • Jayabarathi, T.;Ramesh, V.;Kothari, D. P.;Pavan, Kusuma;Thumbi, Mithun
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.476-483
    • /
    • 2008
  • This paper is aimed at presenting techniques of hybrid differential evolution for solving various kinds of Economic Dispatch(ED) problems such as those including prohibited zones, emission dispatch, multiple fuels, and multiple areas. The results obtained for typical problems are compared with those obtained by other techniques such as Particle Swarm Optimization(PSO) and Classical Evolutionary Programming(CEP) techniques. The comparison of the results proves that hybrid differential evolution is quite favorable for solving ED problems with no restrictions on the shapes of the input-output functions of the generator.

Operation Scheme to Regulate Constant Active Power Output of Wind Turbine and Fuel-Cell Hybrid System (정출력 조정을 위한 풍력-연료전지 하이브리드 시스템의 운영 기법)

  • Kim, Yun-Seong;Moon, Dae-Seong;Won, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1174-1175
    • /
    • 2008
  • A operation scheme to regulate the active power output of the hybrid system consisted of a doubly fed induction generator(DFIG) and a fuel-cell are presented. The power output of the wind turbine fluctuates as the wind speed varies and the slip power between the rotor circuit and power converter varies as the rotor speed change. A fuel cell system can be individually operated and adjusted output power. In this paper, a fuel-cell is performed to regulate the active output power in comparison with the active power output of a DFIG. Based on PSCAD/EMTDC power system tools, we simulated a DFIG and a fuel cell and investigated about dynamics of the output power in hybrid system.

  • PDF

Development of Hybrid Excavator for Regeneration of Boom Potential Energy (작업장치 위치에너지 회생을 위한 하이브리드 굴삭기 시스템 개발)

  • Yoon, J.I.;Ahn, K.K.;Truong, D.Q.;Kang, J.M.;Kim, J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • Nowadays with the high fuel prices, the demands for energy saving and green emission of construction machinery have highly been increased without sacrifice of working performance, safety and reliability. The aim of this paper is to propose a new energy saving hybrid excavator system using an electro-hydraulic actuator driven by an electric motor/generator for the regeneration of potential energy. A 5 ton class excavator is analyzed, developed with the boom for the evaluation of the designed system. The hardware implementation is also presented in this paper. A control strategy for the hybrid excavator is proposed to operate the machine with a highest efficiency. The energy saving ability of the proposed excavator is clearly verified through simulation and experimental results in comparison with a conventional hydraulic excavator.

  • PDF

Performance Test and Design of Harmonic Reduction Hybrid Transformer (고조파 저감형 하이브리드 변압기의 성능시험)

  • Kim, Ji-Ho;Han, Sung-Ho;Son, Jin-Gun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.277-282
    • /
    • 2014
  • Hybrid transformer means the distribution transformer, one of multi-function transformer equipped with the enhancement function of harmonics and unbalance. In other words, since existing transformer are equipped simply with transformation function only, a separated electric facility should be additionally installed in order to reduce the mutual harmonics and unbalance. Meanwhile, since hybrid transformer can perform the reduction of harmonics and unbalance as well as transformation function simultaneously through zigzag winding, it doesn't need any additional electric facility. This study addressed the issue of developing and testing the performance of a generator that would reduce the harmonics supplied to the grid when grid-connected with the output of a photovoltaic inverter for photovoltaic generation system.