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Hybrid Differential Evolution Technique for
Economic Dispatch Problems

T.J ayabarathiT, V. Ramesh*, D. P. Kothari*, Kusuma Pavan*
and Mithun Thumbi**

Abstract — This paper is aimed at presenting techniques of hybrid differential evolution for solving various kinds of
Economic Dispatch (ED) problems such as those including prohibited zones, emission dispatch, multiple fuels, and multiple
areas. The results obtained for typical problems are compared with those obtained by other techniques such as Particle Swarm
Optimization (PSO) and Classical Evolutionary Programming (CEP) techniques. The comparison of the results proves that
hybrid differential evolution is quite favorable for solving ED problems with no restrictions on the shapes of the input-output

functions of the generator.
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1. Introduction

Economic dispatch is an optimizing scheme for a
generation system to determine the best generation
schedule for a given load demand in terms of cost,
environmental pollution effects, and losses. The
economic dispatch problems and their solutions by
non-conventional methods have been very widely
discussed in the literature. Evolutionary Programming
based solutions for the ED problem with prohibited zones
has been discussed in [1-4]. Sudhakaran et al. proposed
refined genetic algorithms for solving Combined
Economic and Emission Dispatch (CEED) problems [5].
Immanuel et al. [6] solved the same CEED problem by
using the particle swarm optimization algorithm.
Jeyakumar et al. [7] applied PSO for solving four different
types of economic dispatch problems. Basu [8] proposed
Hopfield Neural Networks (HNN) for CEED problems.
Lee et al. [9] applied adaptive HNN for load dispatch
problems. These references are typical and by no means
exhaustive. Developments in the field of Evolutionary
Computation have resulted in new tools for solving
optimization problems in electric power engineering.
Storn and Price [10] introduced the Differential Evolution
technique for minimizing real functions. The Hybrid
Differential Evolution (HDE) technique was employed by
Chiou [11] for solving large-scale economic dispatch
problems.

Other applications of the same technique can be found
in [12-18]. It is a simple method based on stochastic
searches.
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In this paper, Section 2 states the various types of ED
problems. Section 3 provides the basic algorithm of
hybrid differential evolution followed by applications to
the problems in the previous section. Section 4 gives the
results for typical problems and compares them with other
methods. Finally, Section 5 provides the conclusions.

2. Problem Formulation

Basically four types of problems are considered here,
[19] namely ED with prohibited zones of generator
operation (POZ), ED with piecewise quadratic functions
for multiple fuels (PQCF), combined economic emission
dispatch (CEED), and multi-area economic dispatch
(MAED).

2.1 Formulation of the problem of ED with POZ

The problem of economic dispatch with POZ can be
formulated as

N N
min Y F(P)=minY (a,P} +bP+c;) (1)

=1 j=1

Where a; b;and c;are the cost coefficients of generator j
and P, is the power generated by the jth unit, subject to
(i) the power balance constraints

N
R @

.

Where P, is the system load demand and Py, is the system
loss which can be found through the use of B-matrix loss
coefficients.
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(if) Generating capacity constraints
FwSE<P . for j=123.N 3)

where P; ., and P, ., are the minimum and maximum
possible powers generated by unit ;.

(iii) For units with prohibited zones, there are additional
constraints on the unit operating range
1 1
@iv) P S P, <Pl
u i
Pl < P, <P ,k=2,..2
P!, <P <P 4

JhZ; = J,max

where P/ and P!, are lower and upper bounds of
k, the prohibited zones and Z; is the number of
prohibited zones of unit j.

2.2 Formulation of the problem of ED with PQCF

If multiple fuels are used each for a different range of
operation, the cost function will become piecewise
quadratic. The ED problem with PQCF will be defined as

N
mln]z::‘Fj(Pj) (5)
F(P)= [ anFf TbuP+e,, fuel 1P, <P <P,
ST
apPl+b,P ¢, fuel 2, P, . <P <P,

a, Pl +b,P +c, ,fuelm P, <P <P

jm m=-1 — J.max

\

Where %m>2im @9 € 4o coefficients of generator j for fuel
type m subject to the constraints given by Egs. (2) and (3).

2.3 Formulation of the CEED problem

In this case, reduction in emission is an additional
objective besides cost. The emission can be expressed as a
quadratic polynomial, similar to the cost curve as

E:id.Pj%ejPﬁfj (6)

J
J=l

where dp.e;& 1, are the coefficients of the emission of
unit j and F, is the total emission of pollution of the N
generating units.

The emission curve is directly related to the cost curve
through the emission rate per MBTU, which is a constant
factor for a given type of fuel.

The CEED problem is formulated by weighing the cost

given in Eq. (1) and the emission function in Eq. (6)
according to their relative importance and the two
weighted functions are added together to produce a final
objective function as

min f = oF+(1-o)F, (7

where F; is the fuel cost function, F, is the emission
function and @ is the weighting function in the range 0
and 1. When @ =0, only the emission objective is
considered and when @ = 1, only the cost objective is
accounted for. The value of & can be varied to obtain a
trade-off between fuel cost and emission cost. The CEED

function is subject to the power balance constraint and
capacity limits constraint given in Egs. (2) and (3).

2.4 Formulation of the MAED problem

Here, the objective is to determine the generation
levels and interchange power between areas that
minimize the system operation cost while satisfying a
set of constraints as

M M Ny
min sz = min Z Z(am"Pr:n + bmann + cmn) (8)
m=|

m=l  n=1

where &, is the number of on-line units for area m in an M

area system; a,,, b, and c,,, are the fuel cost coefficients
and *P,,, is the power output of generator » in area m
subject to

(i)Area power balance constraint;

Nn
SP 42ty = >t —P, =0
=l J B JEB (9)

(i1) Generation-limit-constraints:

P, <P <P

mn,min mn,max ( 1 0)

(ii1) Tie-line limit constraints :
Z‘jk,min < tjk < tjk,max (11)
where f,, is the set of tie-lines in area m; Fon is the load
demand for area m, fymin, ljgmax are the tie-line minimum
and maximum capacity limits; and ty is the economic tie
transfer from area j to area £.

3. The Hybrid Differential Evolution Technique
Hybrid Difterential Evolution [12] approach is a simple

population based stochastic function method and has been
extended from the original algorithm of differential
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evolution [10]. This method is used to solve unconstrained
nonlinear, non-smooth, and non-differentiable
optimization problems. The basic operations of HDE are:

Step 1: Representation and Initialization: HDE is a
parallel direct search algorithm that utilizes N vectors of
decision variables, x, in the non-linear programming
problem, i.e X°=¢x° , i=1,......, Np}as a population in
generation G. For convenience, the decision vector
(chromosome), x;, is represented as (xy;, ... X, ... xy;). Here,
the decision variable (gene), x;; , is directly coded as a real
value within its corresponding lower-upper bounds. The
initialization process generates Np individuals x;
randomly, and has to cover the entire search space
uniformly in the form

x'=x"+p; (xV-x"),i=1,2,..cc...., Np (12)

where p; is a vector of random numbers in the range [0,1].
The N genes of each individual are the powers generated
by each generator satisfying the inequality (generation
limits) and equality (power balance) constraints and hence
form a feasible solution.

Step 2: Mutation: Pairs of individual vectors from step 1
are chosen at random. A mutant individual is generated by

uiG+I:XpG+pm(XjG_XkG Wi=12...... Np (13)

where random indices p,j,k € {1,2,..... Np} are integer
values and are mutually different. Mutation factor p,, is a
real-valued random number between zero and one.

Step 3: Crossover Operation: The crossover operation is
performed to increase the local diversity of the population.
This operation reproduces an offspring at the next
generation. The newly mutant individual in w,°"’ in Eq.
(13) and the current individual ij are chosen by a
binomial distribution to perform the crossover operation.
In this operation, each gene of the ith individual is

reproduced from the mutant vectors w°™ =( ;%"
. o
wH uy S ) and the current individual x; G=(x 10 X
G . xNiG) as follows:
u; ! x;, if a random number > Cy (14)
G+1 . .
u; ", otherwise ; j=1,....N, i=I,..,Np

Where the crossover factor Cy €/0,1] is a constant and has
to be set by the user.

Step 4: Selection and Evaluation: The offspring is
compared with its parent and it replaces the parent if its
fitness is higher. Otherwise, the parent is retained. Here the
fitness function is the objective function of the various
equations is Section 2. Two selection steps are performed

in this evaluation expression. The first step is a one-to-one
competition, and the next step is to select the best
individual in the population. These two steps are expressed
in the forms

)"(iGH: argmin{fx°) fu)hi=1, ... .... N, (15)

)'ZbG”=argmin{f(XiG”),i:1» e e, N} (16)

where argmin means the argument of the minimum. From
Egs. (15) and (16), the best individual, x,°*' , can be kept
at each generation .

Step 5: Accelerated Operation: An accelerated operation
and a migration operation are used as a trade-off. The
accelerated operation is used to speed up the convergence,
whereas the migration operation is used to evade the local
minima. If the best individual is no longer improved by
mutation and crossover, the gradient of the objective
function, (Vf'), obtained by finite difference is applied to
push the best individual to a better point by the steepest
descent method. The acceleration operation is therefore
expressed as

XbN:XbG+1_pa fo(x)l be+1 (17)

where x;” is the newest and best solution. The continuous

gradient of the objective function, Vx Ax), can be
approximately calculated with a finite difference method.
The step size, p, €[0,1], is judiciously chosen for proper
convergence. The objective function value, Ax,"), is then
compared with Ax,°™). If the descent property is obeyed,
ie.,

Jx") < x5 (18)

the new individual, x;" , is added into this population to
replace the worst individual. On the other hand, if the
descent property fails, the step size, p, , is adjusted. The
descent method is repeated to obtain x;" until pVxf
becomes sufficiently small or an iteration limit is exceeded.
Consequently, the best fitness, j‘(be ), should be at least
equal to or smaller than f{x,*’).

Step 6: Migration Operation: In order to greatly increase
the exploration of the search space and decrease the
selection pressure of a small population, a widespread
search heuristic called migration is introduced to generate
a newly diversified population of individuals. The newly
migrant individuals are generated on the basis of the best
individual, x," = (x5 7 ... xw’* ), by using
non-uniformly random choice. New genes of the ith
individual are therefore generated by
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G+1 ) .
Xp O p(x L. X @y if a random
number
G+l Ly, U _L
ot <G -x0)067-x7) (19)
(xji )=
X_/bG ‘ 1+p(xj v. X o+l J.otherwise,
j=1, ......... N
i=1 N,-1

Where p is a random number in the range [0, 1].

The migration operation of HDE is performed only if a
measure of population diversity does not match the desired
tolerance. Hence we use a measure, Py, defined as follows.

Np N
P =LY ) (NN, —1) < &, (20
i=1 j=1 -~
ith
Where
1= 1 il 1> £ 2 @1)
0, otherwise

where &, and &, are the desired tolerance for the group
diversity and gene diversity with respect to the best

individual. In this case, i s defined as an index of gene
diversity. Its value is zero if the jth gene of the ith
individual closely clusters with the jth gene of the best
individual.

The migration operation is performed only if the degree
of population diversity is smaller than the desired

tolerance &, . From (20) it is inferred that the degree of

population diversity is between zero and one. A value of
zero implies that all genes cluster around the best
individual. Conversely, a value of 1 indicates that the
current candidate individuals are a completely diversified
population. The desired tolerance for population diversity
is accordingly assigned within this region. Zero tolerance
implies that the migration is switched off whereas a
tolerance of 1 implies that the migration operation is
performed at every generation.

4. Simulation Results

To test the effectiveness of the HDE algorithm, four
different types of economic dispatch problems are
considered. These are: (i) ED with prohibited operating
zones, (ii) ED with multiple fuel options, (iii) CEED, and
{(iv) multi-area ED with tie-line constraints. The results
obtained for all these problems are compared with the
Particle Swarm Optimization Approach. The software
was written using the Matlab 6.5 platform. All four types

of ED problems were solved using both HDE method and
PSO approach in the same Matlab 6.5 platform for the
purpose of comparison.

For all four examples considered in this paper, the
desired tolerances for the population diversity, £ 1=0.001,
and the desired tolerance for the gene diversity, & ,=0.02,
are used.

4.1 Example 1. Prohibited Zones

This example problem is based on a 15-unit practical
power system with four of the units having up to three
operating zones from [1]. The system load demand is 2650
MW. Table 1 shows the results obtained by the HDE.
These results are compared with those obtained using PSO
and CEP methods [1]. The results are comparable. The
exact value of fuel cost obtained using dynamic
programming is 32,506 $/hr. [1]. The HDE method took
1.7s and the PSO method tock 1.97s to converge to the
optimal solution. Therefore, there is a significant reduction

in computation time. The parameters used in HDE
approach are: Crossover factor Cx=0.7, Population size =
50, Iterations=200.

Table 1. Simulation results of ED with POZ of Example 1

Output Optimization Techniques
in MW HDE PSO[7] CEP[7]
G1 455.00 455.00 449.946
G2 454.998 455.000 450.000
G3 130.000 130.000 130.000
G4 130.000 130.000 130.000
G5 259.658 260.000 260.000
G6 459.998 460.000 460.000
G7 15.000 015.000 015.000
G8 60.000 060.000 060.000
GY 25.000 025.204 025.000
G10 20.252 020.001 020.001
Gl 60.085 069.804 020.000
G12 75.021 065.000 055.004
G13 25.000 025.000 025.000
Gli4 15.000 015.000 015.000
G15 464.988 464.991 465.000
Total cost | 32506.226 | 32506.297 | 32507.553
($/hr)
Iterations 48 89 396
CPU time(s) 1.703 1.969 3.875

The convergence behavior of HDE and PSO methods are
shown in Fig.1. From the figure it can be observed that
initially the PSO method appears to converge faster but after
less than 20 iterations HDE performs better. The reason for
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this can be attributed to the initial exploratory behavior of
HDE, which slows down the convergence initially in search
of possibilities for avoiding local minima.

Fig. 2 shows the comparison of the two graphs — one
without accelerated and migration operations (woam) and

the other with accelerated and migration operations (wam).
The accelerated operation has accelerated the convergence.

However, since faster convergence leads to local
minimum, the migration operation has been applied to
prevent this. These effects on convergence can be clearly
observed in this figure.

x10% GENERATION COST vs NO: OF ITERATIONS
323 T T T
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Fig. 1. Convergence Characteristics of HDE and PSO for
the ED with POZ of Example 1
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Fig. 2. Convergence Characteristics of HDE Showing the
Effects of Acceleration and Migration factors for
Example 1

woam : without acceleration and migration
wam: with acceleration and migration

4.2 Example 2. Piecewise Quadratic Cost Functions

This example considers ten generating units each with
three types of fuel and a load demand of 2700 MW [9].
The results obtained by the HDE are compared against the
PSO method in Table 2. From the Table it is observed that
the solutions are almost identical. The HDE method took
0.74s and the PSO method 2.82s to converge to the optimal

solution which means that the HDE method is converging
faster than the PSO method. The parameters used are:
Crossover factor Cz=0.1, Population size = 23,
Iterations=300.

The convergence characteristics of the HDE and PSO
methods are shown in Fig. 3. From this figure it can also be
inferred that HDE is definitely a faster and more superior
method for solving this type of problem.

Table 2. Results of the PQCF Problem of Example 2

102 150 200 25 290

Optimization Techniques
Outputin MW g E™ 1 PSO[7] CEP[7]
P1 214.802 221.559 217.467
P2 210.656 210.318 211.650
P3 280.303 279.650 281.58
P4 241.166 240.182 239.696
P5 279.765 278.170 279.394
P6 238.700 238.670 240.513
P7 282.424 278.767 287.681
P8 238.814 239.566 239.661
P9 440.000 440.000 428.704
P10 273.367 273.119 273.650
Tot.cost ($/hr) | 623.985 624.037 623.819
Iterations 18 50 236
CPU time (s) 0.74 2.82 1.52
[iv]
—— HDE
B e PED
B0
:E; BSS -
2
E’f B
£ sl
g
%1
@ sl L
E25 -!ﬂ.“ P U oo
BX

No. of Iterations=>
Fig. 3. Convergence ot the HDE and PSO for the PQCF

Problem of Example 2

4.3 Combined Economic Emission Dispatch

This example has six generating units. Minimization of
NOx emission is also considered as an objective. The fuel
cost co-efficients and emission co-efficients are given in
[20]. The results obtained using HDE are compared with
those obtained using PSO and CEP in Table 3. It is seen
from the Table that HDE and PSO converge to almost the
same total cost of 19372 $/h, but HDE took the least time
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Table 3. Results of the CEED Problem of Example 3

the HDE are compared against PSO and CEP in Table 4. It
is seen from the Table that all the three methods converge
to almost the same total cost of 7337 $/h, but the HDE took
the least time of 7.32s as against 8.156s for PSO and
11.49s for CEP. The parameters used are: Crossover
factor Cz=0.4, Population size = 40, Iterations=1300.

Figure 5 shows the convergence behavior of the HDE
and PSO methods. The HDE converged faster than the
PSO. This is consistent with the three previous examples
considered in this paper.

Table 4. Results of the MAED Problem of Example 4

Optimization Techniques
HDE PSO[7] CEP[7]
P1 (MW) 77.386 77.238 77.274
P2 (MW) 49.632 49.935 49.639
P3 (MW) 51.229 48.797 48.535
P4 (MW) 102.800 103.767 103.525
PS5 (MW) 259.139 259911 260.695
P6 (MW) 190.966 191.259 191.233
Line loss 31.152 30.906 30.901
MW)
Emission :
cost 524.764 527.167 524.49
(kg/hr)
Fuel cost | 38219740 | 38216.522 | 38216.470
($/hr)
Total
cost 19372.252 | 19371.844 | 19369.842
($/hr)
Iterations 09 129 217
CPU 0.473
time (s) ' 1.563 17.64
1 085 500
1961
é 49551
=3
-
§
§ 1948
N
1935 alu ﬂl'lu TRG 240 4] 330

No. of iterations—>
Fig. 4. Convergence of HDE and PSO for the CEED
Problem of Example 3

of 0.473s as against 1.563s for PSO and 17.64s for CEP.
The parameters used are: Crossover factor Cyz=0.4,
Population size = 40, Iterations=300.

The convergence behavior of the HDE and the PSO
methods are shown in Figure 4. From the figure it can be
inferred that even though HDE is faster, PSO gives better
results in terms of cost. A compromise has to be made
between a quick good solution and a slower better solution
depending on the objective of analysis.

4.4 Multi-area Economic Dispatch:

This example is a four area system interconnected by six
tie lines. The cost co-efficients, generation limits, and tie
line flow limits are given in [21]. The results obtained by

Optimization Techniques
HDE | PSO[7] | CEP[7]
Area 1 P1 (MW) | 149994 | 150.000 | 150.000
Load P2(MW) | 99.993 | 100.000 | 100.000
4000MW) | P3(MW) | 66401 | 68.826 068.826
P4A(MW) | 99.997 | 99.985 099.985
AREA2 | P5(MW) | 56.886 | 56.613 056.373
LOAD P6(MW) | 96.894 | 95474 | 093.519
2000MW) | P7T(MW) | 41447 | 41.617 042.546
PS(MW) | 73.071 | 72356 072.647
AREA3 | P9 (MW) [ 50.004 | 50.000 { 050.000
LOAD | PIOMW) | 36272 | 35973 036.399
S00MW) | PTI(MW) | 38.508 | 38.210 038.323
P12(MW) | 37.145 | 37.162 036.903
AREA4 | P13(MW) | 149.997 | 150.000 | 150.000
LOAD | P14(MW) | 100.000 | 100.000 | 100.000
3000MW) | PIS(IMW) | 57.175 | 57.830 56.648
PI6(MW) | 96217 | 97.349 95.349
AREA S
Tie Line Values (MW)
From To
1 2 0.001 00.000 00.00
1 3 18.097 | 22.588 19.587
1 4 0.000 00.000 00.000
2 1 0.000 00.000 00.018
2 3 1.712 66.064 68.861
2 4 0.000 00.000 00.000
3 1 0.000 00.000 00.000
3 2 0.000 00.000 00.000
3 4 0.000 00.000 00.000
4 1 69.975 | 05.176 00.758
4 2 1.676 00.004 01.789
4 3 100.000 | 100.00 99.927
Total cost ( $/hr) 733713 | 73369 | 7337.75
No. of iterations 5 3 920
CPU time (sec) 320 1192 11.49
7.32 8.156
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Fig. 5. Convergence of the HDE and PSO for MAED Problem

of Example 4

5. Conclusion

Application of the HDE method to four different kinds
of ED problems is demonstrated in this paper. The
solutions and solution times for the four sample problems
typical to each kind bring out the advantages of the HDE
method. It is observed that the HDE technique is capable
of finding the near global or global solutions of non-linear,
non-smooth, and non-differentiable objective functions.
The HDE method is computationally faster at finding the
same solution. This can be observed from all the graphs
plotted here. From the tabulated results for all the
examples, it can be concluded that the HDE Technique is
more favorable compared to the PSO and the CEP
methods, in terms of the optimal solutions, the number of
iterations, and CPU time.

The importance of mtroducing acceleration and
migration factors can be seen by comparing figures 1 and 2
of the ED problem with POZ. Here, the inclusion of the
acceleration factor has reduced the convergence time
while the introduction of the migration factor has
improved the optimal result by avoiding the local optima.
Similar effects are also observed in the remaining
examples. The results reported here and the observations
made from them confirm that HDE is a better technique to
solving all kinds of ED problems with a variety of
constraints.
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