• 제목/요약/키워드: Hybrid Simulated Annealing

검색결과 70건 처리시간 0.026초

회귀 신경망과 유한 상태 자동기계 동정화 (A Class of Recurrent Neural Networks for the Identification of Finite State Automata)

  • 원성환;송익호;민황기;안태훈
    • 한국정보전자통신기술학회논문지
    • /
    • 제5권1호
    • /
    • pp.33-44
    • /
    • 2012
  • 이 논문에서는 얼개가 새로운 회귀 신경망을 제안하고, 그 신경망이 어떤 이산 시간 동적 시스템도 동정화 할 수 있음을 보인다. 또한, 제안한 신경망을 써서 유한 상태 자동기계를 부호화, 동정화, 그리고 추출하는 데에 적용하여 그 성능을 살펴본다. 제안한 신경망에 고친 비용함수를 쓰고 혼합 그리디 모의 담금질 방법으로 학습시키면 유한 상태 자동기계를 동정화하는 성능이 일반적으로 다른 기법보다 더 낫다는 것을 모의실험으로 보인다.

Optimal Design of Nonlinear Squeeze Film Damper Using Hybrid Global Optimization Technique

  • Ahn Young-Kong;Kim Yong-Han;Yang Bo-Suk;Ahn Kyoung-Kwan;Morishita Shin
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1125-1138
    • /
    • 2006
  • The optimal design of the squeeze film damper (SFD) for rotor system has been studied in previous researches. However, these researches have not been considering jumping or nonlinear phenomena of a rotor system with SFD. This paper represents an optimization technique for linear and nonlinear response of a simple rotor system with SFDs by using a hybrid GA-SA algorithm which combined enhanced genetic algorithm (GA) with simulated annealing algorithm (SA). The damper design parameters are the radius, length and radial clearance of the damper. The objective function is to minimize the transmitted load between SFD and foundation at the operating and critical speeds of the rotor system with SFD which has linear and nonlinear unbalance responses. The numerical results show that the transmitted load of the SFD is greatly reduced in linear and nonlinear responses for the rotor system.

Improved Hybrid Symbiotic Organism Search Task-Scheduling Algorithm for Cloud Computing

  • Choe, SongIl;Li, Bo;Ri, IlNam;Paek, ChangSu;Rim, JuSong;Yun, SuBom
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.3516-3541
    • /
    • 2018
  • Task scheduling is one of the most challenging aspects of cloud computing nowadays, and it plays an important role in improving overall performance in, and services from, the cloud, such as response time, cost, makespan, and throughput. A recent cloud task-scheduling algorithm based on the symbiotic organisms search (SOS) algorithm not only has fewer specific parameters, but also incurs time complexity. SOS is a newly developed metaheuristic optimization technique for solving numerical optimization problems. In this paper, the basic SOS algorithm is reduced, and chaotic local search (CLS) is integrated into the reduced SOS to improve the convergence rate. Simulated annealing (SA) is also added to help the SOS algorithm avoid being trapped in a local minimum. The performance of the proposed SA-CLS-SOS algorithm is evaluated by extensive simulation using the Matlab framework, and is compared with SOS, SA-SOS, and CLS-SOS algorithms. Simulation results show that the improved hybrid SOS performs better than SOS, SA-SOS, and CLS-SOS in terms of convergence speed and makespan.

유전자 알고리즘을 이용한 뼈대구조물의 이산최적화 (Discrete Optimization of Plane Frame Structures Using Genetic Algorithms)

  • 김봉익;권중현
    • 한국해양공학회지
    • /
    • 제16권4호
    • /
    • pp.25-31
    • /
    • 2002
  • This paper is to find optimum design of plane framed structures with discrete variables. Global search algorithms for this problem are Genetic Algorithms(GAs), Simulated Annealing(SA) and Shuffled Complex Evolution(SCE), and hybrid methods (GAs-SA, GAs-SCE). GAs and SA are heuristic search algorithms and effective tools which is finding global solution for discrete optimization. In particular, GAs is known as the search method to find global optimum or near global optimum. In this paper, reinforced concrete plane frames with rectangular section and steel plane frames with W-sections are used for the design of discrete optimization. These structures are designed for stress constraints. The robust and effectiveness of Genetic Algorithms are demonstrated through several examples.

Setup 시간을 고려한 Flow Shop Scheduling (Scheduling of a Flow Shop with Setup Time)

  • 강무진;김병기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.797-802
    • /
    • 2000
  • Flow shop scheduling problem involves processing several jobs on common facilities where a setup time Is incurred whenever there is a switch of jobs. Practical aspect of scheduling focuses on finding a near-optimum solution within a feasible time rather than striving for a global optimum. In this paper, a hybrid meta-heuristic method called tabu-genetic algorithm(TGA) is suggested, which combines the genetic algorithm(GA) with tabu list. The experiment shows that the proposed TGA can reach the optimum solution with higher probability than GA or SA(Simulated Annealing) in less time than TS(Tabu Search). It also shows that consideration of setup time becomes more important as the ratio of setup time to processing time increases.

  • PDF

요격미사일 배치문제에 대한 하이브리드 유전알고리듬 적용방법 연구 (An Application of a Hybrid Genetic Algorithm on Missile Interceptor Allocation Problem)

  • 한현진
    • 한국국방경영분석학회지
    • /
    • 제35권3호
    • /
    • pp.47-59
    • /
    • 2009
  • A hybrid Genetic Algorithm is applied to military resource allocation problem. Since military uses many resources in order to maximize its ability, optimization technique has been widely used for analysing resource allocation problem. However, most of the military resource allocation problems are too complicate to solve through the traditional operations research solution tools. Recent innovation in computer technology from the academy makes it possible to apply heuristic approach such as Genetic Algorithm(GA), Simulated Annealing(SA) and Tabu Search(TS) to combinatorial problems which were not addressed by previous operations research tools. In this study, a hybrid Genetic Algorithm which reinforces GA by applying local search algorithm is introduced in order to address military optimization problem. The computational result of hybrid Genetic Algorithm on Missile Interceptor Allocation problem demonstrates its efficiency by comparing its result with that of a simple Genetic Algorithm.

Nonlinear Blind Equalizer Using Hybrid Genetic Algorithm and RBF Networks

  • Han, Soo-Whan;Han, Chang-Wook
    • 한국멀티미디어학회논문지
    • /
    • 제9권12호
    • /
    • pp.1689-1699
    • /
    • 2006
  • A nonlinear channel blind equalizer by using a hybrid genetic algorithm, which merges a genetic algorithm with simulated annealing, and a RBF network is presented. In this study, a hybrid genetic algorithm is used to estimate the output states of a nonlinear channel, based on the Bayesian likelihood fitness function, instead of the channel parameters. From these estimated output states, the desired channel states of the nonlinear channel are derived and placed at the center of a RBF equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with those of a conventional genetic algorithm(GA) and a simplex GA, and the relatively high accuracy and fast convergence of the method are achieved.

  • PDF

A Hybrid of Evolutionary Search and Local Heuristic Search for Combinatorial Optimization Problems

  • Park, Lae-Jeong;Park, Cheol-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.6-12
    • /
    • 2001
  • Evolutionary algorithms(EAs) have been successfully applied to many combinatorial optimization problems of various engineering fields. Recently, some comparative studies of EAs with other stochastic search algorithms have, however, shown that they are similar to, or even are not comparable to other heuristic search. In this paper, a new hybrid evolutionary algorithm utilizing a new local heuristic search, for combinatorial optimization problems, is presented. The new intelligent local heuristic search is described, and the behavior of the hybrid search algorithm is investigated on two well-known problems: traveling salesman problems (TSPs), and quadratic assignment problems(QAPs). The results indicate that the proposed hybrid is able to produce solutions of high quality compared with some of evolutionary and simulated annealing.

  • PDF

OptiNeural System for Optical Pattern Classification

  • Kim, Myung-Soo
    • Journal of Electrical Engineering and information Science
    • /
    • 제3권3호
    • /
    • pp.342-347
    • /
    • 1998
  • An OptiNeural system is developed for optical pattern classification. It is a novel hybrid system which consists of an optical processor and a multilayer neural network. It takes advantages of two dimensional processing capability of an optical processor and nonlinear mapping capability of a neural network. The optical processor with a binary phase only filter is used as a preprocessor for feature extraction and the neural network is used as a decision system through mapping. OptiNeural system is trained for optical pattern classification by use of a simulated annealing algorithm. Its classification performance for grey tone texture patterns is excellent, while a conventional optical system shows poor classification performance.

  • PDF

하모니 서치와 시뮬레이티드 어넬링을 사용한 트러스의 단면 및 형상 최적설계 (Optimum Design for Sizing and Shape of Truss Structures Using Harmony Search and Simulated Annealing)

  • 김봉익
    • 한국강구조학회 논문집
    • /
    • 제27권2호
    • /
    • pp.131-142
    • /
    • 2015
  • 트러스구조는 대형구조물의 설계 및 시공에 편리하며, 부재의 경량화에 따른 비용의 절검 효과를 얻을 수 있는 구조물로 최근 다양한 형태의 구조물건설에 많이 사용되고 있다. 본 연구에서는 응력, 좌굴 그리고 구조물의 고유진동수 제약조건을 고려한 트러스 구조물의 단면과 형상에 대해 최적설계를 하였다. 최적설계에서 최적화기법으로 HA-SA방법을 제시하였으며, HA-SA방법은 HA 초기메모리에서 최상의 설계를 SA의 초기 설계로 하여 최적화 하는 방법이다. 예제에 사용된 트러스 구조물은 고유진동수 제약조건으로 10-bar, 72-bar, 52-bar 트러스와 응력 및 좌굴응력 제약조건으로 18-bar, 47-bar 트러스를 사용하였다. 그리고 52-bar, 18-bar, 47-bar의 경우는 트러스의 형상을 최적설계 하였다. 예제로부터 다양한 설계 제약조건하에서 여러 연구결과와 HA, SA, GA, HA-SA방법에 의한 결과를 서로 비교하여 HA-SA방법의 적용성을 입증하였다.