
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, Aug. 2018 3516
Copyright ⓒ 2018 KSII

Improved Hybrid Symbiotic Organism
Search Task-Scheduling Algorithm for

Cloud Computing

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝟏𝟏,𝟐𝟐,𝟑𝟑,∗, 𝐁𝐁𝐁𝐁 𝐋𝐋𝐋𝐋𝟐𝟐, 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 𝐑𝐑𝐑𝐑𝟏𝟏, 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝟑𝟑, 𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉 𝐑𝐑𝐑𝐑𝐑𝐑𝟒𝟒, 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐘𝐘𝐘𝐘𝐘𝐘𝟑𝟑

1 College of Information Science, Kim Il Sung University,

Pyongyang, Democratic People’s Republic of Korea

2 College of Management and Economics, Tianjin University, Tianjin 300072, China

3 Department of Information Science, HuiChon Industry University,

HuiChon, Democratic People’s Republic of Korea

4 Department of Control Science, University of Science,

Pyongyang, Democratic People’s Republic of Korea

* Corresponding author: SongIl Choe (cxl2015316@163.com)

Received April 8, 2018; revised June 25, 2018; accepted July 4, 2018;

published August 31, 2018

Abstract

Task scheduling is one of the most challenging aspects of cloud computing nowadays, and it
plays an important role in improving overall performance in, and services from, the cloud,
such as response time, cost, makespan, and throughput. A recent cloud task–scheduling
algorithm based on the symbiotic organisms search (SOS) algorithm not only has fewer
specific parameters, but also incurs time complexity. SOS is a newly developed
metaheuristic optimization technique for solving numerical optimization problems. In this
paper, the basic SOS algorithm is reduced, and chaotic local search (CLS) is integrated into
the reduced SOS to improve the convergence rate. Simulated annealing (SA) is also added to
help the SOS algorithm avoid being trapped in a local minimum. The performance of the
proposed SA-CLS-SOS algorithm is evaluated by extensive simulation using the Matlab
framework, and is compared with SOS, SA-SOS, and CLS-SOS algorithms. Simulation
results show that the improved hybrid SOS performs better than SOS, SA-SOS, and
CLS-SOS in terms of convergence speed and makespan.

http://doi.org/10.3837/tiis.2018.08.001 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3517

Keywords: cloud computing, cloud task scheduling, symbiotic organisms search, simulated
annealing, chaotic local search

1. Introduction

Cloud computing is a model with rapid growth in recent years, increasing due to

technological developments in distributed computing, grid computing, and parallel
computation. Cloud computing is a model that can obtain resources quickly from a
configurable shared resources pool of servers, storage, networks, services, and applications
in real time and based on demand. The supply and release of resources can finish in a shorter
time to reduce the load on resource management and to keep the interactions between service
providers to a minimum [1].

The basic principles of task scheduling in the cloud are to break down the tasks reported
by masses of users into smaller tasks via the network, using multiple computers connected to
the network to search, compute, and combine the results, and then send them back to the
users. In recent decades, task scheduling has attracted increased attention and has become a
very challenging research field. In the process of task scheduling, users submit their jobs to
the cloud scheduler, which checks the cloud information service for the status of available
resources and their properties and then allocates various tasks to different resources per their
requirements. The goal of scheduling is to map tasks to appropriate resources that optimize
one or more objectives. Therefore, the task scheduling problem in cloud computing belongs
to a category known as NP-hard problems, owing to the large solution space and the dynamic
nature of heterogeneous resources [2,3,4]. Thus, it constitutes one of the crucial aspects of a
resource management system in cloud computing, which ensures attainment of general
quality of service in terms of response time, total execution time (makespan), and throughput,
among other things. In addition, appropriate task scheduling is effective in reducing the
operational costs of cloud service providers in terms of energy consumption and resource
utilization.

Task scheduling problems in the cloud have been tackled using heuristic and metaheuristic
algorithms.

Heuristic algorithms provide optimal solutions for small problems; but the solutions
produced by these algorithms are far from optimal as the size of the problem increases [5-8].

3518 SongIl Choe et al.: Improved Hybrid Symbiotic Organism Search
Task-Scheduling Algorithm for Cloud Computing

Metaheuristic algorithms have achieved remarkable success in providing near optimal
solutions for task scheduling, and they have since drawn the attention of several researchers
[9-11]. However, metaheuristic algorithms still suffer from issues like entrapment in local
optima, premature convergence, slow convergence, or imbalances between local and global
searches.

Hence, there is scope for further development of task scheduling algorithms in the quest
for improved solutions. To solve task scheduling problems now, many metaheuristic
algorithms are used, such as ant colony optimization (ACO) [12-15], the genetic algorithm
(GA) [18-22], particle swarm optimization (PSO) [25-27], plus variations on, and hybrids of,
these methods [16,17,23-31]. A GA simulates natural evolutionary processes [20,22]; PSO
simulates the behaviors of flock foraging [25, 29], and ACO imitates the foraging behavior
of a real ant colony [12,15]. Recently, some researchers have proposed symbiotic organisms
search (SOS) algorithms [31-34]—nature-inspired, swarm-based optimization algorithms
imitating the natural symbiotic interactions between different living things. One major
advantage of SOS is that it needs only one control variable (eco-size or population size) in
comparison with other popular optimization techniques that surfaced earlier [31]. Also, the
basic structure of the SOS algorithm is simple and easy to implement. This has made the
SOS algorithm popular among many metaheuristic algorithms in recent years, and it has
shown improved performance in solving different types of optimization problems [34].
Therefore, the potential for SOS to find a global solution to optimization problems exhibited
so far makes it attractive for further investigation and exploration. The quality of solutions
and convergence speed obtained by metaheuristic algorithms can be improved by its
hybridization with either another metaheuristic algorithm or the local search method, and by
generating an initial solution using heuristic search techniques or by modifying the transition
operator [6-11]. To the best of our knowledge, none of the aforementioned techniques have
been explored to investigate the possible improvement of SOS in terms of convergence
speed and the quality of solutions obtained by SOS. In this paper, we study a new task
scheduling algorithm using an improved simulated annealing (SA) chaotic local search (CLS)
symbiotic organisms search (SA-CLS-SOS). The proposed SA-CLS-SOS algorithm
combines the SA method [35-38] and the CLS method [39-43] with the SOS optimization
algorithm. In this paper, the basic SOS algorithm is reduced, and CLS is integrated into the
reduced SOS to improve the convergence rate of the basic SOS algorithm. Also, SA is
combined in order to help SOS avoid being trapped in a local minimum.

The performance of the proposed SA-CLS-SOS algorithm is evaluated via extensive
simulations using a Matlab simulation framework, and is compared with SOS, SA-SOS, and
CLS-SOS. Simulation results show that the hybrid SOS performs better than SOS, SA-SOS,
and CLS-SOS in terms of convergence speed and makespan. The main contributions of this
paper are as follows.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3519

• Clearer presentation of SOS, SA, and CLS procedures for scheduling of tasks in a cloud
computing environment.
• Proposal of a new cloud task–scheduling method called SA-CLS-SOS.
• Performance comparison of the proposed hybrid method with other algorithms (SOS,
SA-SOS, CLS-SOS).
• Descriptive statistical validation of the SA-CLS-SOS results against other selected methods
using a significance test.
The remainder of this paper is organized as follows. Metaheuristic algorithms that have been
applied to task scheduling problems in the cloud (SOS, SA, CLS) are presented in Section 2.
Section 3 describes the task scheduling model in cloud computing, and detailed
implementation of the improved hybrid SA-CLS-SOS algorithm for task scheduling in cloud
computing is presented in Section 4. The simulation results and discussions are in Section 5.
Section 6 presents the conclusion to the paper.

2. Related Work

In computing, scheduling is a method by which work specified by some means is assigned
to resources that complete the work. It may be virtual computation elements, such as threads
and processors, or data flows which are in turn scheduled onto hardware resources such as
processors. Schedulers allow multiple users to share system resources properly, or to achieve
good quality of service. Scheduling is fundamental to computation, and is an internal part of
the execution model of a computer system. The concept of scheduling makes possible
computer multitasking with a single central processing unit. Preference is given to any one of
the concerns mentioned above, depending upon the user's needs and objectives.

Cloud computing is a model with rapid growth in recent years, increasing due to
technological developments in distributed computing, grid computing and parallel
computation. Task scheduling is the main problem in cloud computing. In recent decades,
task scheduling has attracted increasing attention and has become a challenging research
field. However, task scheduling in the cloud is an NP-hard problem, and thus, it constitutes
one of the crucial aspects of a resource management system in cloud computing, which
ensures attainment of general quality of service in terms of response time, total execution
time (makespan), and throughput, among other things. In addition, appropriate task
scheduling is effective in reducing the operational costs of cloud service providers in terms
of energy consumption and resource utilization.

Task scheduling problems in the cloud have been tackled using heuristic and metaheuristic
algorithms.

3520 SongIl Choe et al.: Improved Hybrid Symbiotic Organism Search
Task-Scheduling Algorithm for Cloud Computing

Heuristic algorithms provide optimal solutions for small problems, but the solutions

produced by these algorithms are far from optimal as the size of the problem increases [6-8].
Metaheuristic algorithms have achieved remarkable success in providing near optimal

solutions for task scheduling, and they have since drawn the attention of several researchers
[9,10,11]. Metaheuristic methods have been applied to solve task assignment problems in
order to reduce makespan and response time. The methods were proved able to find an
optimum mapping of tasks to resources, which reduces the cost of computation, improves
quality of service, and increases utilization of computing resources.

2.1 Symbiotic Organism Search algorithm

The SOS algorithm was inspired by symbiotic interactions between paired organisms in an
ecosystem. Each organism denotes a potential solution to an optimization problem under
consideration, and has its position in the solution space. Organisms adjust their positions
according to mutualism, commensalism, or parasitism interaction models in the ecosystem.
With the mutualistic form of interaction, two interacting organisms both benefit from the
relationship; this is applied to the first phase of the algorithm. Commensalism is where one
organism benefits from the relationship while other is not harmed. Commensalism is applied
to the second phase of the algorithm to fine-tune the solution space. With parasitism, only
one organism benefits while the other is harmed. Parasitism interaction is applied in the third
phase of the algorithm. The fittest organisms survive in the solution space, whereas unfit
ones are eliminated. The best organisms are identified as those that benefit from all three
phases of the interaction. The phases of the procedure are continuously applied on the
population of “organisms” that represent candidate solutions until the stopping criteria are
reached. Each organism within an ecosystem is represented by a vector in the solution plane.
Each organism in the search space is assigned a value that suggests the extent of adaptation
to the sought objective. The algorithm repeatedly uses a population of the possible solutions
to converge to an optimal position where the global optimal solution lies. The algorithm used
mutualism, commensalism, and parasitism to update the positions of the solution vector in
the search space. SOS is a repetitive process for an optimization problem [30], as given in
Definition 2.1. The procedure keeps a population of candidate solutions to the studied
problem. The relevant information concerning the decision variables and fitness values is
encapsulated into the organism as an indicator of its performance. Essentially, the
trajectories of the organisms are modified using the phases of symbiotic association.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3521

Definition 2.1. Given a function f：D → R X ′ ∈ D:∀X ∈ Df�X ′� ≤ or ≥ f(X) ≤

(≥)minimization(maximization)
where f is an objective function to be optimized, and D represents the search space, while
the elements of D are the feasible solutions. X is a vector of optimization variables,
X = {x1, x2, x3,⋯ , xn}. An optimal solution is a feasible solution, X ′, that optimizes f.

The steps of the symbiotic organism search algorithm are given below.
Step 1: Ecosystem initialization
The initial population of the ecosystem is generated, and other control variables, such as

ecosystem size and maximum number of iterations, are specified. The positions of the
organisms in the solution space are represented by real numbers.

Step 2: Selection
The organism with the best fit objective function is represented as xbest.
Step 3: Mutualism phase
In the i’th iteration, an organism, xj, is randomly selected from the ecosystem to interact

with an organism, xi, for mutual benefit, where i ≠ j according to (1) and (2):
xi′ = xi + rand(0,1) × (xbest − Mutualvect × k1) (1)

xj′ = xj + rand(0,1) × (xbest − Mutualvect × k2) (2)

The mutual vector is expressed as

Mutualvect = xi+xj
2

 (3)

The rand(0,1) function is a vector of uniformly distributed random numbers between 0
and 1. The values of benefit factors k1 and k2 are determined randomly as either 1 or 2,
and represent the level of benefit to each of the two organisms, xi and xj (where 1 and 2,
respectively, denote an adequate and a huge benefit that can be received by both xi and xj
in their current mutual symbiotic states). The organism with the best objective or fitness
function value in terms of the degree of adaptation in the ecosystem is represented by xbest .
Mutualvect signifies mutualistic characteristics exhibited between the two organisms to
increase their survival advantage. It should be noted that any update for any one of the two

organisms is computed only if its new fitness function value, denoted by f�xi′� or f(xj′), is

better than the previous solutions, f(xi) and f(xj).
Given the above, Eqs. (1) and (2) become

xi′ = xi + rand(0,1) × �xbest −Mutualvect × k1�, if f�xi′� > 𝑓𝑓(xi) (4)

xj′ = xj + rand(0,1) × (xbest − Mutualvect × k2), if f�xj′� > 𝑓𝑓�xj� (5)

Step 4: Commensalism phase

3522 SongIl Choe et al.: Improved Hybrid Symbiotic Organism Search
Task-Scheduling Algorithm for Cloud Computing

In this phase, organism xi (selected randomly from the ecosystem) strives to increase its
benefits from the association with xj. This kind of symbiotic association only places xi at
an advantage over xj, even though xj is not harmed in the process. The new solution
emanating from the symbiotic relationship is calculated as shown in Eq. (6):

xi′ = xi + rand(−1,1) × �xbest − xj� if f�xi′� > 𝑓𝑓(xi) (6)
Step 5: Parasitism phase
In the i’th iteration, a parasite vector, 𝑥𝑥𝑝𝑝 , is created by mutating 𝑥𝑥𝑖𝑖 using a randomly

generated number in the range of the decision variables under consideration, and organism
𝑥𝑥𝑖𝑖 with 𝑖𝑖 ≠ 𝑗𝑗 is selected randomly from the population to serve as host to 𝑥𝑥𝑝𝑝. If the fitness
value 𝑓𝑓(𝑥𝑥𝑝𝑝) is greater than 𝑓𝑓(𝑥𝑥𝑗𝑗), then 𝑥𝑥𝑝𝑝 will replace 𝑥𝑥𝑗𝑗; otherwise, 𝑥𝑥𝑝𝑝 is discarded.

Steps 2 through 5 are repeated until the stopping criterion is reached.
Step 6: Stopping criterion
The pseudocode of SOS is presented in Algorithm 1.

Algorithm 1. Symbiotic Organism Search Algorithm
Create and initialize the population of organisms in ecosystem 𝑋𝑋 = {𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,⋯ , 𝒙𝒙𝑵𝑵}
Set up stopping criterion
iteration_number← 𝟎𝟎
𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 ← 𝟎𝟎
Do
 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊_𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 ← 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊_𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 + 𝟏𝟏
 𝒊𝒊 ← 𝟎𝟎
 Do
 𝒊𝒊 ← 𝒊𝒊 + 𝟏𝟏
 For 𝒋𝒋 = 𝟏𝟏 𝒕𝒕𝒕𝒕 𝑵𝑵
 𝑰𝑰𝑰𝑰 𝒇𝒇�𝒙𝒙𝒋𝒋� > 𝒇𝒇�𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃� 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 // 𝒇𝒇(𝒙𝒙) 𝒊𝒊𝒊𝒊 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇
 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 ← 𝒙𝒙𝒋𝒋
 End if

End for
//mutualism phase
Randomly select 𝒙𝒙𝒋𝒋 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒊𝒊 ≠ 𝒋𝒋
 𝒌𝒌𝟏𝟏 ← 𝟏𝟏 𝒐𝒐𝒐𝒐 𝟐𝟐
 𝒌𝒌𝟐𝟐 ← 𝟏𝟏 𝒐𝒐𝒐𝒐 𝟐𝟐

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 = 𝒙𝒙𝒊𝒊+𝒙𝒙𝒋𝒋
𝟐𝟐

 𝒙𝒙𝒊𝒊′ = 𝒙𝒙𝒊𝒊 + 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝟎𝟎,𝟏𝟏) × (𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 −𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 × 𝒌𝒌𝟏𝟏)

 𝒙𝒙𝒋𝒋′ = 𝒙𝒙𝒋𝒋 + 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝟎𝟎,𝟏𝟏) × (𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 − 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 × 𝒌𝒌𝟐𝟐)

𝑰𝑰𝑰𝑰 𝒇𝒇�𝒙𝒙𝒊𝒊′ � > 𝒇𝒇(𝒙𝒙𝒊𝒊) 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3523

 𝒙𝒙𝒊𝒊 ← 𝒙𝒙𝒊𝒊′
End if

𝑰𝑰𝑰𝑰 𝒇𝒇�𝒙𝒙𝒋𝒋′ � > 𝒇𝒇�𝒙𝒙𝒋𝒋� 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻

 𝒙𝒙𝒋𝒋 ← 𝒙𝒙𝒋𝒋′

End if
//commensalism phase
Randomly select 𝒙𝒙𝒋𝒋 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒊𝒊 ≠ 𝒋𝒋
𝒙𝒙𝒊𝒊′ = 𝒙𝒙𝒊𝒊 + 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(−𝟏𝟏,𝟏𝟏) × �𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 − 𝒙𝒙𝒋𝒋�
𝒊𝒊𝒊𝒊 𝒇𝒇�𝒙𝒙𝒊𝒊′ � > 𝒇𝒇(𝒙𝒙𝒊𝒊) The
 𝒙𝒙𝒊𝒊 ← 𝒙𝒙𝒊𝒊′
End if
//parasitism phase
Randomly select 𝒙𝒙𝒋𝒋 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒊𝒊 ≠ 𝒋𝒋
Create parasite vector 𝒙𝒙𝒑𝒑 from 𝒙𝒙𝒊𝒊 using random number
𝑰𝑰𝑰𝑰 𝒇𝒇(𝒙𝒙𝒑𝒑) > 𝒇𝒇(𝒙𝒙𝒊𝒊) 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻
 𝒙𝒙𝒋𝒋 ← 𝒙𝒙𝒑𝒑
End if
 While 𝒊𝒊 <= 𝑵𝑵
While stopping condition is not true

The SOS algorithm is thought to be efficient at solving complex optimization and discrete
engineering problems, but it still has a high probability of plunging to the local optimum [30].
Therefore, the SOS-SA algorithm was proposed to overcome this shortcoming.

2.2 Simulated annealing algorithm
Simulated annealing is used to further process the result from SOS to avoid falling into the

local optimal solution [33,34].The process begins by considering a solution space, 𝑺𝑺 , of a
particular tour through the set of given cities or points, 𝒙𝒙𝒊𝒊|𝒊𝒊 = 𝟏𝟏,𝟐𝟐,⋯ ,𝒏𝒏, with update
solutions 𝒙𝒙𝒊𝒊′ created by randomly switching the orders of two cities. The energy function or
fitness function, which represents the length of route 𝒙𝒙𝒊𝒊, is denoted by 𝒇𝒇(𝒙𝒙𝒊𝒊). The relative

change in cost, ∆𝒇𝒇, between 𝒙𝒙𝒊𝒊 and 𝒙𝒙𝒊𝒊′ is expressed as ∆𝒇𝒇 = 𝒇𝒇�𝒙𝒙𝒊𝒊
′ �−𝒇𝒇(𝒙𝒙𝒊𝒊)
𝒇𝒇(𝒙𝒙𝒊𝒊)

. Beginning with

the initial solution, only the solution that results in a smaller energy value than the previous
solution is accepted by the algorithm; in other words, a solution is only accepted with a
fitness value of 𝒇𝒇(𝒙𝒙𝒊𝒊′) < 𝒇𝒇(𝒙𝒙𝒊𝒊). However, accepting or rejecting a new solution with higher
fitness values for 𝒙𝒙′ can be based on the acceptance probability function, given as follows:

3524 SongIl Choe et al.: Improved Hybrid Symbiotic Organism Search
Task-Scheduling Algorithm for Cloud Computing

𝑷𝑷(∆𝒇𝒇,𝑻𝑻𝒌𝒌) = � 𝒆𝒆
�−∆𝒇𝒇𝑻𝑻𝒌𝒌

�
, ∆𝒇𝒇 > 𝟎𝟎

𝟏𝟏, ∆𝒇𝒇 ≤ 𝟎𝟎
 for 𝑻𝑻𝒌𝒌 > 𝟎𝟎 (7)

where 𝑻𝑻𝒌𝒌 is the parameter temperature at the 𝒌𝒌𝒕𝒕𝒕𝒕 instance of accepting a new solution
route, and for any given T, for ∆𝒇𝒇 > 𝟎𝟎, P is greater for smaller values of ∆𝒇𝒇, which means
that, for the new solution 𝒙𝒙𝒊𝒊′ that is only slightly more costly than the current solution, 𝒙𝒙𝒊𝒊 is
more likely to be accepted than a new solution 𝒙𝒙𝒊𝒊′ that is much more costly than current
solution 𝒙𝒙𝒊𝒊 . The value of T, which is an important control parameter, decreases in

proportion to P ; that is, as 𝒍𝒍𝒍𝒍𝒍𝒍𝑻𝑻→𝟎𝟎+𝒆𝒆
(−∆𝒇𝒇𝑻𝑻𝒌𝒌

)
= 𝟎𝟎,∆𝒇𝒇 > 𝟎𝟎. Therefore, as the value of T

decreases, the probability of accepting a degraded route also decreases. In this paper, the
following cooling schedule is adopted:

𝑻𝑻𝒌𝒌+𝟏𝟏 = 𝜶𝜶𝑻𝑻𝒌𝒌 (8)
where 𝛂𝛂 denotes the cooling coefficient, which is some random constant value between 0
and 1, and it is also the rate at which the temperature is lowered each time new solution 𝒙𝒙𝒊𝒊′
is discovered. The SA procedure is presented in Algorithm 2.

Algorithm 2. Pseudocode for SA.

Input : Initial temperature 𝑻𝑻𝟎𝟎, final temperature 𝑻𝑻𝒌𝒌 , cooling rate α, maximum iteration
maxiter

 Output : Best cost
1: Chose a random route 𝒙𝒙𝒊𝒊 and initialize 𝑻𝑻𝟎𝟎T 0 and α
2: For counter = 1 to maxiter
3: Create a new solution 𝒙𝒙𝒊𝒊′ by randomly swapping two cities in neighborhood of 𝒙𝒙𝒊𝒊

4: Compute ∆𝒇𝒇 = 𝒇𝒇�𝒙𝒙𝒊𝒊
′ �−𝒇𝒇(𝒙𝒙𝒊𝒊)
𝒇𝒇(𝒙𝒙𝒊𝒊)

 and use the acceptance probability function to either accept

or reject
 the new solution, based on the following conditions:

a) if ∆𝒇𝒇 ≤ 𝟎𝟎, 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒙𝒙𝒊𝒊 ← 𝒙𝒙𝒊𝒊′
b) if ∆𝒇𝒇 > 𝟎𝟎, 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒙𝒙𝒊𝒊 ← 𝒙𝒙𝒊𝒊′ depending on Eq. (7)

5: Reduce the temperature using Eq. (8) and increment k
6: Update the best solution
7: End for

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3525

2.3. Chaotic local search algorithm
Chaos is a deterministic process that is usually found in dynamic and nonlinear systems; it

has high sensitivity to initial conditions and parameter changes. Chaos is characterized by
randomness, ergodicity, irregularity, and apparent unpredictability. Chaos is known as
randomness in a simple dynamic system, which motivates its usage as a source of
randomness in optimization theory and other various fields instead of the usual random
process. Chaotic sequences have been employed in stochastic optimization techniques to
provide population diversity in a search space to ensure global convergence, as well as to
avoid local optima entrapment. Chaotic sequences are highly sensitive to their initial values.
It is quite important to select the initial value for the chaotic map very precisely. In chaotic
PSO (CPSO) [39], the decision variables of PSO are mapped into the chaotic domain with
Eq. (9):

𝒄𝒄𝒄𝒄𝒊𝒊 = (𝒙𝒙 − 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎)/(𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎) (9)
where 𝒄𝒄𝒄𝒄𝒊𝒊 is the initial value of the chaotic sequence, x is the position of the particle, and
𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 and 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 are the search boundaries. But this mapping may lead to ineffectiveness of
the chaotic search as the initial value of the chaotic sequence becomes fixed, and hence, the
whole chaotic orbit becomes monotonous. CLS is activated when the best solution, obtained
by PSO over the entire population, does not change for several times [40]. In this case, u
becomes fixed, and hence, the chaotic search orbit will always be the same before the next
chaotic search. This will worsen the performance of the chaotic search. To avoid this
problem and to maintain the ergodicity of the chaotic search, Saha and Mukherjee suggested
usage of a random function to generate the initial value of the chaotic sequence [40]. So, the
initial value of the chaotic sequence is

𝒄𝒄𝒄𝒄𝒊𝒊 = 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝟎𝟎,𝟏𝟏) (10)
As chaotic search is most efficient in a small range [38], CLS in the proposed CSOS of the

present work is performed over a small radius, r. CLS is only applied to the best organism
(𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃) as achieved after the commensalism phase of the reduced SOS optimizer. This is
because (𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃−r, 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 +r) would be the most promising range for the local search.
Moreover, it saves more time, compared with the methods that apply chaotic search on all
the particles. Chaotic search radius r is defined initially by Eq. (11), and then, it is
subsequently decreased in the next generations with the help of a shrinking coefficient,
𝜹𝜹(𝟎𝟎 < 𝜹𝜹 < 𝟏𝟏), to shrink the search area [34]:

𝒓𝒓 = (𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎)/𝟐𝟐 (11)

The initial variable of the chaotic sequence (that is, 𝒄𝒄𝒄𝒄𝒊𝒊) is generated by using Eq. (10),
and the next variable of that chaotic sequence (i.e. 𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏) is generated by using Piecewise
Linear Chaotic Map (PLCM). PLCM is formulated in Eq. (12) [38]:

3526 SongIl Choe et al.: Improved Hybrid Symbiotic Organism Search
Task-Scheduling Algorithm for Cloud Computing

𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏 = �

𝒄𝒄𝒄𝒄𝒊𝒊
𝒒𝒒

 𝒄𝒄𝒄𝒄𝒊𝒊 ∈ (𝟎𝟎,𝒒𝒒)
(𝟏𝟏−𝒄𝒄𝒄𝒄𝒊𝒊)
(𝟏𝟏−𝒒𝒒)

 𝒄𝒄𝒄𝒄𝒊𝒊 ∈ (𝒒𝒒,𝟏𝟏)
 (12)

where q is the control parameter (q∈ 0, 0.5).

The distributions of two different chaotic maps are shown in Fig. 1 over 500 time steps
(Fig. 1a is a logistic map, and Fig. 1b is the PLCM [40]). The chaotic map that is used here
to generate the chaotic sequence is the simple PLCM. PLCM is ergodic in nature (see Fig.
1b) and has a uniform invariant density function. It is easy to implement, and it depicts very
good dynamic behavior, which makes it superior to the well-known logistic map (Fig. 1a)
[40].

(a) (b)

Fig. 1. Distribution of chaotic maps for (a) a logistic map, and (b) PLCM.

Using Eq. (13), the chaotic variables generated by PLCM are mapped back to the search
range around the best organism:

𝒙𝒙𝒊𝒊+𝟏𝟏 = 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 + 𝒓𝒓(𝟐𝟐𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏 − 𝟏𝟏) (13)

where 𝒙𝒙𝒊𝒊+𝟏𝟏 is the position of the best organism over the entire population at the (i +1)th
generation of CLS, and 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 is the position of the best organism in the ecosystem after the
traditional SOS. The fitness value is calculated for organism 𝒙𝒙𝒊𝒊+𝟏𝟏, and it will be considered
the best organism if it provides better fitness than the previous best organism. The CLS
procedure is presented in Algorithm 3.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3527

Algorithm 3. Chaotic Local Search Pseudocode
Set i=0
Initialize chaotic variable 𝒄𝒄𝒄𝒄𝒊𝒊 = 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝟎𝟎,𝟏𝟏)
Set chaotic search radius r with Eq. (11)
do

Calculate 𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏 by (12)
Map 𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏 back to the range around the best organism using 𝒙𝒙𝒊𝒊+𝟏𝟏 = 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 +

𝒓𝒓(𝟐𝟐𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏 − 𝟏𝟏)
Evaluate fitness value for 𝒙𝒙𝒊𝒊+𝟏𝟏

while a better solution is found, or the maximum number of iterations is
reached

Decrease the radius of the chaotic search space by 𝒓𝒓 = 𝜹𝜹 × 𝒓𝒓
 // 𝜹𝜹 is a random number between 0 and

1

3. Task Scheduling Model in Cloud Computing

To simplify the complexity of the problem and establish an effective task scheduling
model, we make the following assumptions. Tasks submitted by the users are indivisible
meta-tasks; furthermore, each task is an independent operation and does not run on priority;
the number of tasks submitted by users in cloud computing is far greater than for virtual
machines in a cloud datacenter; the execution time of tasks in a virtual machine (VM) can be
calculated according to the information processing speed, in millions of instructions per
second (MIPS). To establish a mathematical model of facilitated task scheduling, we
established the related parameters of the tasks and the virtual machines as follows.

Task set T = {Task1, Task2, Task3,⋯ , Taski,⋯ , Taskm} = {Taski|i > 0, 𝑖𝑖 ∈ [1, m]} ,
where m is the number of tasks submitted by the users. Taski represents the i’th task in
the task sequence. The feature of Taski is defined as {TKi, task_lengthi, Time_expi, Pi}, in
which TKi is the serial number of tasks, and task_lengthi is the instruction length of the
task in millions of instructions (MI). Time_expi refers to the user’s expected completion
time for Taski, and Pi refers to the task priority.

The VM set is VM = �vm1, vm2, vm3,⋯ , vmj,⋯ , vmn� = �vmj�j > 0, 𝑗𝑗 ∈ [1,𝑛𝑛]�, where
n is the number of virtual machines, and vmj denotes the j’th virtual machine resource in
the cloud environment. The feature of vmj is defined as �VMj, MIPSj�, in which VMj is the
serial number of the virtual machine, and MIPSj is the information processing speed in
MIPS of the virtual machine.

3528 SongIl Choe et al.: Improved Hybrid Symbiotic Organism Search
Task-Scheduling Algorithm for Cloud Computing

The tasks are scheduled on the available VMs, and execution of the tasks is done on a
first-come first-served basis. Our aim is to schedule tasks on VMs in order to achieve high
utilization with a minimal makespan. As a result, the expected time to compute (ETC) of the
tasks to be scheduled on each VM will be used by the proposed method to make scheduling
decisions. ETC values were determined using the ratio of the MIPS of the VM to the length
of the task.

ETC values are usually represented in matrix form, as follows:

ETC = �
ETC11 ⋯ ETC1n
⋮ ⋱ ⋮

ETCm1 ⋯ ETCmn
� (14)

where the number of tasks to be scheduled appears in the rows of the matrix, and the number
of available VMs appears in the columns of the matrix. Each row of the ETC matrix
represents execution times of the given tasks for each VM, while each column represents
execution times of the tasks on a given VM. Our objective is to minimize the makespan by
finding the best group of tasks to be executed on VMs.

Let ETCij, i = 1,2,⋯ , m, j = 1,2,⋯ , n be the execution time of executing the i’th task on
the j’th VM.

Then ETCij is calculated as follows:

ETCij = task_lengthi MIPSj⁄ (15)

The fitness value of each organism is determined using Eq. (16), which determines the
strength of the level of adaptation of the organism to the ecosystem:

objective function = max �∑ f�Mj�
n

n
j=1 � (16)

f�Mj� = μ
makespan

 (17)

μ = ∑ λj
n

n
j=1 (18)

λj = Taskj
makespan

 (19)

makespan = max�ETCij�i ∈ T, i = 1,2,3,⋯ , m; j ∈ VM, j = 1,2,3,⋯ , n � (20)

In Eq. (17), f�Mj� is the fitness value of virtual machine j, and μ is the average
utilization of virtual machines ready for the execution of tasks. The essence is to support load
balancing among VMs, so λj defines the utilization of virtual machine j.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3529

For the degree of imbalance, let Tmax, Tmin, and Tavg denote the sums of the maximum,
minimum, and average execution times, respectively, for all VMs. The degree of imbalance
(DI) defines the extent of the load distribution among the VMs according to their processing
capacities, and is determined with Eq. (21):

DI = Tmax−Tmin
Tavg

 (21)

4. Hybrid SA-CLS-SOS Algorithm for task Scheduling in Cloud
Computing

The SA-CLS-SOS algorithm is a hybrid of symbiotic organisms search, simulated
annealing, and chaotic local search. CLS is employed after the commensalism phase,
replacing the parasitism phase of SOS. In the mutualism phase, two new candidate solutions
are generated, whereas during commensalism, one new candidate solution is generated based
on the previous best solution or organism in the ecosystem. In both the mutualism and
commensalism phases, the new candidate solutions or organisms are accepted if they have
better fitness values than the previous best organism, and these newly generated organisms
direct the search process over the unvisited portion of the entire search space. In short, the
mutualism and commensalism phases provide better exploration of the search space. On the
other hand, in the parasitism phase, the current best organism from the commensalism phase
is duplicated to act as a parasite vector, and it interacts with a randomly chosen organism
from the ecosystem. If the randomly chosen organism has a better fitness value than the
parasite vector, it will remain in the ecosystem; otherwise, it will be destroyed. This may
lead to loss of a potential solution in case of any improper duplicating of a parasite vector or
any ineffective interaction that cannot produce a better solution over a number of generations.
This will affect computational efficiency and will take an unnecessarily longer computation
time. In contrast, with CLS, the search process is intensified towards a promising region that
enhances the exploitation of the search space. As a result, a better solution may be found
more quickly. Also, SA is a local-search metaheuristic algorithm widely used for solving
both discrete and continuous optimization problems. One of the main benefits of SA lies in
its ability to escape the problem of getting stuck in a local minimum by allowing
hill-climbing moves to search for a global solution. Therefore, the hybrid approach is
proposed by introducing SA to assist SOS in avoiding being trapped in a local minimum, and
to increase its level of diversity while searching for the optimum solution in the problem
search space. Thus, the new hybrid algorithm (SA-CLS-SOS) is proposed to improve task
scheduling optimization in cloud computing.

The steps of the hybrid SA-CLS-SOS algorithm are described in Algorithm 4.

3530 SongIl Choe et al.: Improved Hybrid Symbiotic Organism Search
Task-Scheduling Algorithm for Cloud Computing

Algorithm 4. SA-CLS-SOS Pseudocode
Input: Initial ecosystem x , ecosystem size eco _ size, initial temperature 𝐓𝐓𝟎𝟎 , final

temperature 𝐓𝐓𝐤𝐤,
 cooling rate 𝛂𝛂, maximum iteration maxiter

Initialize chaotic variable 𝒄𝒄𝒄𝒄𝒊𝒊 = 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝟎𝟎,𝟏𝟏) ; set chaotic search radius r with Eq. (11)
Output: best known solution 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃

1: Create and evaluate new solutions
Generate 𝒙𝒙𝒊𝒊, i = 1 , 2 , . . . , eco _ size
For i = 1 to maxiter

a) Compute cost / fitness function of 𝒙𝒙𝒊𝒊 , 𝒇𝒇(𝒙𝒙𝒊𝒊)
b) Determine best solution 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃

d) Compute ∆𝒇𝒇 = 𝒇𝒇�𝒙𝒙𝒊𝒊
′ �−𝒇𝒇(𝒙𝒙𝒊𝒊)
𝒇𝒇(𝒙𝒙𝒊𝒊)

If ∆𝒇𝒇 ≤ 𝟎𝟎 𝒐𝒐𝒐𝒐 𝒑𝒑 > 𝒖𝒖, where p is the acceptance probability from Eq. (7), and u is a
random number
 between 0 and 1

then update solution by assigning 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 ← 𝒙𝒙𝒊𝒊
End if
For i = 1 to eco _ size
 2: Update organism (route) with SA (Algorithm 2) on the two SOS phases in Algorithm 1
For i =1 to eco _ size
 a) Modify the organisms according to (1) and (2) in mutualism phase
 b) Modify organism 𝒙𝒙𝒊𝒊 with the help of 𝒖𝒖𝒋𝒋 using (6) in commensalism phase
 c) Update best organism 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃
3: Update best organism 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 using CLS in Algorithm 3
do

Calculate 𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏 by (12)
Map 𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏 back to the range around the best organism using

 𝒙𝒙𝒊𝒊+𝟏𝟏 = 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 + 𝒓𝒓(𝟐𝟐𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏 − 𝟏𝟏)
Evaluate fitness value for 𝒙𝒙𝒊𝒊+𝟏𝟏

while a better solution is found or maximum number of iterations is reached
Decrease the radius of the chaotic search space by 𝑟𝑟 = 𝛿𝛿 × 𝑟𝑟
4: Update the best 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ever found
5: Update temperature using the cooling schedule given in Eq. (8)
5: End for
6: End for
7: End for

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3531

The hybrid algorithm is initialized by random solutions and searches for the optimization
solution by the search process intensified towards a promising region that enhances the
exploitation of the search space. Also, the hybrid algorithm escapes the problem of getting
stuck in a local minimum by allowing hill-climbing moves to search for a global solution.
During this course, an evolution of this solution is performed by integrating SA, CLS, and
SOS.

The SOS optimization strategy is performed in three search-and-update phases (i.e., mutualism,
commensalism, and parasitism) as presented subsequently. In Algorithm 4, step 1 is SA. The SA
technique is employed in the solution search procedure of the mutualism and commensalism
phases of SOS. This procedure is presented in step 2. Then, CLS is employed after the
commensalism phase, replacing the parasitism phase of SOS. In step 3, this procedure is
presented.

 5. Simulation and Results

In order to test the performance of the proposed method, simulations were carried out
using the Matlab R2017a_win64 computing environment on a 3.2 GHz core i5 personal
computer with 4 GB of random access memory (RAM).

One datacenter was created containing two hosts. Each host had 20 GB RAM, 1 TB
storage, 10 GBps bandwidth, and a time-shared VM scheduling algorithm. One host was a
dual-core machine, while the other was a quad-core machine, each with the X86 architecture,
a Linux operating system, a Xen virtual machine monitor (VMM), and cumulative
processing power of 1,000,000 MIPS. Twenty VMs were created, each with an image size of
10 GB, with 0.5 GB memory, 1 GBps bandwidth, and one processing element. The
processing power of the VMs ranged from 100 MIPS to 5000 MIPS. A time-shared cloudlet
scheduler and the Xen VMM were used for all the VMs. Task sizes were generated in a
uniform distribution, which depicts an equal number of large, medium-size, and small tasks.
For the uniform distribution, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 instances
were generated. The larger instances enabled us to gain insight into the scalability of the
performance of the algorithms with large problem sizes.

The first experiment was carried out for SA-CLS-SOS, SOS, SA-SOS, and CLS-SOS to
evaluate the makespan of the proposed algorithm. The parameter settings of the algorithms
are shown in Table 1. The comparison results are presented in Fig. 2 and Table 2. The
second experiment was carried out to evaluate the degree of imbalance. The results are
presented in Fig. 3 and Table 3. The third experiment was carried out to evaluate the quality
of the solutions of the SA-CLS-SOS algorithm based on makespan. The results are presented
in Fig. 4 to Fig. 6.

3532 SongIl Choe et al.: Improved Hybrid Symbiotic Organism Search
Task-Scheduling Algorithm for Cloud Computing

Table 1. Parameter settings

Algorithm Parameter Value
SOS Number of eco _ sizes 100

Number of iterations 1000
SA Initial temperature, T0 10

Final temperature, Tk 0.001
Cooling rate, α 0.9

CLS Control parameter, p 0.05
Search boundaries: xmax
 xmin

1.2
0.2

In order to compare the performance of the proposed SA-CLS-SOS against SOS, SA-SOS,

and CLS-SOS, graphs for solution quality, makespan, and response time were plotted against
the number of iterations for task sizes from 100 to 1000. Fig. 2 show the average makespan
when executing a task instance 10 times using SOS, SA-SOS, CLS-SOS, and SA-CLS-SOS.

Fig. 2. Makespan comparison between SOS, SA-SOS, CLS-SOS, and SA-CLS-SOS

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3533

The figure indicates minimization of makespan when using SA-CLS-SOS, particularly
from task instances of 300 upward. For makespan, the percentage improvement with
SA-CLS-SOS over SA-SOS is summarized in Table 2, showing that the degree of
performance of SA-CLS-SOS over SA-SOS increases as the search space increases.

Table 2. Makespan comparison between SA-SOS and SA-CLS-SOS
Number of

Tasks
SA-SOS SA-CLS-SOS Improvement

(%) Average Worst Best Average Worst Best
100 312.21 438.57 215.73 278.02 297.00 196.12 10.95
200 807.07 1115.35 507.72 734.91 817.32 522.65 8.94
300 1470.53 1904.61 859.45 1375.71 1484.38 1035.98 6.45
400 2334.28 3309.66 1654.35 1976.99 2168.68 1423.27 15.31
500 3263.91 4396.75 2244.82 2926.87 3099.04 2092.69 10.33
600 4201.65 5391.53 3094.80 3698.41 3847.80 2893.99 11.98
700 5023.15 6118.88 3561.55 4679.92 4956.90 3744.04 6.83
800 6157.11 8487.05 4369.69 5430.88 5800.05 3501.86 11.79
900 7106.45 8446.11 4874.59 6494.58 6825.56 5381.45 8.61

1000 8095.45 9880.74 6171.13 7641.47 7942.74 6680.93 5.61

SA-CLS-SOS also gives a better degree of imbalance among VMs for large problem

instances, as can be observed in Fig. 3.

Fig. 3. Degree of imbalance

3534 SongIl Choe et al.: Improved Hybrid Symbiotic Organism Search
Task-Scheduling Algorithm for Cloud Computing

For the degrees of imbalance, a statistical analysis of SA-SOS and SA-CLS-SOS under
different task sizes is presented in Table 3. As a result, SA-CLS-SOS produced a better
degree of imbalance among VMs, compared to SA-SOS for all task sizes.

Table 3. Comparison of degree of imbalance obtained by SA-SOS and SA-CLS-SOS

Number of
Tasks

SA-SOS SA-CLS-SOS Improvement
(%) Average Worst Best Average Worst Best

100 10.94 17.58 10.71 8.47 20.08 11.04 22.61
200 22 43.28 22.71 14.81 41.38 21.59 32.67
300 38.45 66.91 41.26 28.7 62.57 40.68 25.37
400 50.24 86.57 53.19 31.19 86.84 52.58 37.91
500 67.13 103.88 73.45 54.62 112.19 77.6 18.64
600 76.1 120.36 80.93 53.28 121.42 80.47 29.99
700 103.03 148.15 108.92 66.26 150.92 104.74 35.69
800 111.35 167.11 121.6 70.69 174.31 101.93 36.51
900 133.56 191.2 139.55 98.65 181.62 143.7 26.14
1000 139.3 196.2 149.77 120.5 218.16 163.06 13.49

Convergence graphs showing improvement in the quality of solutions for makespan

obtained by SA-SOS and SA-CLS-SOS using data instances of 100, 500, and 1000 are
presented in Fig. 4 to Fig. 6.

Fig. 4. Convergence graph (100 tasks)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3535

Fig. 5. Convergence graph (500 tasks)

Fig. 6. Convergence graph (1000 tasks)

3536 SongIl Choe et al.: Improved Hybrid Symbiotic Organism Search
Task-Scheduling Algorithm for Cloud Computing

As can be seen, both methods showed improvement in the quality of solutions at the
beginning of the search, but SA-CLS-SOS demonstrated the ability to improve the quality of
solutions at a later stage of the search process. The quality of solutions obtained by
SA-CLS-SOS is better than with SA-SOS, especially when the problem size is large. As can
be seen from the figures, SA-CLS-SOS obtains the lowest makespan, and the quality of the
solutions obtained by the SA-CLS-SOS algorithm is better than SOS, SA-SOS, and
CLS-SOS. That is, the search direction of SA-CLS-SOS tends to converge to a stable point
in fewer iterations. The method is able to improve quality even at a later stage of the search
process, which means that SA-CLS-SOS has a higher probability of obtaining a near-optimal
solution than SA-SOS.

6. Conclusion

This paper presents a novel SA-CLS-SOS algorithm to decrease makespan and improve
the quality of solutions for task scheduling optimization problems in cloud computing. The
proposed algorithm employs simulated annealing and a chaotic local search ability in order
to improve the speed of convergence and the quality of solutions obtained by the SOS
algorithm in terms of makespan. According to the simulation results, SA-CLS-SOS performs
better than SOS, SA-SOS, and CLS-SOS in terms of the quality of the solutions obtained and
makespan. The proposed method can be used to solve other optimization issues in cloud
computing systems and other discrete optimization problems in different domains.

References

[1] XiaoLi He, Yu Song and Ralf Volker Binsack, “The Intelligent Task Scheduling Algorithm in
Cloud Computing,” International Journal of Grid and Distributed Computing, 9(4), pp. 313-324,
April, 2016. Article (CrossRef Link)

[2] S. Balamurugan, Dr.P.Visalakshi, "Strategies for Solving the NP-Hard Workflow Scheduling
Problems in Cloud Computing Environments," Australian Journalof Basic and Applied Sciences,
8(16), pp. 345-355, October, 2014.
http://ajbasweb.com/old/ajbas/2014/October/345-355.pdf

[3] SM Abdulhamid，MS Abd Latiff，G Abdul-Salaam，SH Hussain Madni, "Secure Scientific
Applications Scheduling Technique for Cloud Computing Environment Using Global League
Championship Algorithm," Plos One, 11(7), pp. 1-18, July 12, 2016. Article (CrossRef Link)

[4] T Mathew，KC Sekaran，J Jose, "Study and analysis of various task scheduling algorithms in the
cloud computing environment," ICACCI, pp. 658-664, December 2014.
Article (CrossRef Link)

http://dx.doi.org/10.14257/ijgdc.2016.9.4.28
http://ajbasweb.com/old/ajbas/2014/October/345-355.pdf
http://xueshu.baidu.com/s?wd=author%3A%28Abdulhamid%20SM%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Abd%20Latiff%20MS%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Abdul-Salaam%20G%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Hussain%20Madni%20SH%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=paperuri%3A%287cbf9225a00c8659e12067a49147dc99%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed%2F27384239&ie=utf-8&sc_us=7015530635533875736
http://xueshu.baidu.com/s?wd=paperuri%3A%287cbf9225a00c8659e12067a49147dc99%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed%2F27384239&ie=utf-8&sc_us=7015530635533875736
http://xueshu.baidu.com/s?wd=paperuri%3A%287cbf9225a00c8659e12067a49147dc99%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed%2F27384239&ie=utf-8&sc_us=7015530635533875736
http://xueshu.baidu.com/usercenter/data/journal?cmd=jump&wd=journaluri%3A%287bb19b3839c04dad%29%20%E3%80%8APlos%20One%E3%80%8B&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dpublish&sort=sc_cited
https://doi.org/10.1371/journal.pone.0158102
http://xueshu.baidu.com/s?wd=author%3A%28Teena%20Mathew%29%20Dept.%20of%20Computer%20Science%20%26%20Engineering%2C%20Rajagiri%20School%20of%20Engineering%20%26%20Technology%2C%20Kochi%2C%20India&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28K.%20Chandra%20Sekaran%29%20Dept.%20of%20Computer%20Science%20%26%20Engineering%2C%20National%20Institute%20of%20Technology%2C%20Surathkal%2C%20India&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28John%20Jose%29%20Dept.%20of%20Computer%20Science%20%26%20Engineering%2C%20Rajagiri%20School%20of%20Engineering%20%26%20Technology%2C%20Kochi%2C%20India&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=paperuri%3A%288a9c10e17e9193f82a87d310a9a81a53%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F6968517&ie=utf-8&sc_us=17654973374065292331
http://xueshu.baidu.com/s?wd=paperuri%3A%288a9c10e17e9193f82a87d310a9a81a53%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fieeexplore.ieee.org%2Fdocument%2F6968517&ie=utf-8&sc_us=17654973374065292331
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6949764
https://doi.org/10.1109/icacci.2014.6968517

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3537

[5] F Nzanywayingoma and Y Yang, “ Effective Task Scheduling and Dynamic Resource Optimi
zation based on Heuristic Algorithms in Cloud Computing Environment,” KSII Transactions on
Internet & Information Systems, 11(12), pp. 5780-5802, December, 2017.
Article (CrossRef Link)

[6] Z Wu, X Liu, Z Ni and Y Yang, “A market-oriented hierarchical scheduling strategy in cloud
workflow systems,” Journal of Supercomputing, 63(1), pp. 256-293, January, 2013.
Article (CrossRef Link)

[7] K Kurowski and A Oleksiak, "Hierarchical scheduling strategies for parallel tasks and advance
reservations in grids," Journal of Scheduling, 16 (4), pp. 349-368, August, 2013.

Article (CrossRef Link)
[8] P Huang， H Peng, P Lin and X Li, "Static strategy and dynamic adjustment: An effective method

for Grid task scheduling," Future Generation Computer Systems, 25(8), pp. 884-892, September,
2009. Article (CrossRef Link)

[9] Kalra Mala and Singh Sarbjeet, “A review of metaheuristic scheduling techniques in Cloud
computing,” Egyption Informatics Journal, vol. 16, no. 3, pp. 275-295, August, 2015.
Article (CrossRef Link)

[10] Young-Choon Lee and Albert Zomaya, "A Novel State Transition Method for
Metaheuristic-Based Scheduling in Heterogeneous Computing Systems," IEE Transactions on
Parallel and Distributed Systems, 19(9), pp. 1215-1223, September, 2008.
Article (CrossRef Link)

[11] R. Maheswaran and S.G. Ponnambalam, "A meta-heuristic approach to single machine
scheduling problems," The International Journal of Advanced Manufacturing
Technology, 25(7-8), pp. 772–776, April, 2005. Article (CrossRef Link)

[12] U Jaiswal and S A Ggarwal, “Ant Colony Optimization,” International Journal of Scientific &
Engineering Research, 2(7), pp. 2229-5518, July, 2011.
https://www.ijser.org/researchpaper/ant_colony_optimization.pdf

[13] M edhat Tawfeek, Arabi Keshk, Ashraf EI-Sisi and Fawzy A. Torket,
“Cloud Task Scheduling Based on Ant Colony Optimization,” INTERNATIONAL ARAB
JOURNAL OF INFORMATION TECHNOLOGY, 12(2), pp. 64-69, November, 2013.

Article (CrossRef Link)
[14] Gao Ying, Duan Jiajie and Shu Wanneng, “A Novel Ant Optimization Algorithm

for Task Scheduling and Resource Allocation in Cloud Computing Environment,” JOURNA OF
INTERNET TECHNOLOGY, 16(7), pp. 1329-1338, January, 2015.
Article (CrossRef Link)

[15] LI Li-Fen, YL Zhu and JY Zhang, “A cloud model based multiple ant colony algorithm for the
routing optimization of WSN with a long-chain structure,” Comput. Eng. Sci, 32(11), pp. 10-14,
November, 2010. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSJK201011002.htm

https://doi.org/10.3837/tiis.2017.12.006
https://doi.org/10.1007/s11227-011-0578-4
http://xueshu.baidu.com/s?wd=author%3A%28Krzysztof%20Kurowski%29%20Poznan%20Supercomputing%20and%20Networking%20Center%2C%20Poznan%2C%20Poland%2061-704&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Ariel%20Oleksiak%29%20Poznan%20Supercomputing%20and%20Networking%20Center%2C%20Poznan%2C%20Poland%2061-704&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=paperuri%3A%28ab3e2f3ae628524c843e603d68038600%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D2507003&ie=utf-8&sc_us=14344340539942604853
http://xueshu.baidu.com/s?wd=paperuri%3A%28ab3e2f3ae628524c843e603d68038600%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fdl.acm.org%2Fcitation.cfm%3Fid%3D2507003&ie=utf-8&sc_us=14344340539942604853
http://xueshu.baidu.com/usercenter/data/journal?cmd=jump&wd=journaluri%3A%287cb28dcb816a6db5%29%20%E3%80%8AJournal%20of%20Scheduling%E3%80%8B&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dpublish&sort=sc_cited
https://doi.org/10.1007/s10951-011-0254-9
https://doi.org/10.1007/s10951-011-0254-9
http://xueshu.baidu.com/s?wd=author%3A%28Huang%2C%20Peijie%29%20College%20of%20Informatics%2C%20South%20China%20Agricultural%20University%2C%20Guangzhou%20510642%2C%20PR%20China&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Peng%2C%20Hong%29%20College%20of%20Computer%20Science%20and%20Engineering%2C%20South%20China%20University%20of%20Technology%2C%20Guangzhou%20510640%2C%20PR%20China&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Lin%2C%20Piyuan%29%20College%20of%20Informatics%2C%20South%20China%20Agricultural%20University%2C%20Guangzhou%20510642%2C%20PR%20China&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Li%2C%20Xuezhen%29%20Department%20of%20Computer%20and%20Information%20Engineering%2C%20Guangdong%20Technical%20College%20of%20Water%20Resources%20and%20Electric%20Engineering%2C%20Guangzhou%20510635%2C%20PR%20China&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=paperuri%3A%2830a4cfb6a77ae4b8c0916e5e4e70c54a%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0167739X09000399&ie=utf-8&sc_us=3839905649874511966
http://xueshu.baidu.com/s?wd=paperuri%3A%2830a4cfb6a77ae4b8c0916e5e4e70c54a%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0167739X09000399&ie=utf-8&sc_us=3839905649874511966
https://www.sciencedirect.com/science/journal/0167739X
https://doi.org/10.1016/j.future.2009.03.005
https://doi.org/10.1016/j.eij.2015.07.001%C2%A0
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Young-Choon%20Lee.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Albert%20Zomaya.QT.&newsearch=true
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
https://doi.org/10.1109/tpds.2007.70815
https://link.springer.com/journal/170
https://link.springer.com/journal/170
https://doi.org/10.1007/s00170-003-1864-y
https://www.ijser.org/researchpaper/ant_colony_optimization.pdf
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=16&SID=5BXe2vwEvw2e4zGKJFs&page=3&doc=28
https://doi.org/10.1109/ICCES.2013.6707172
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=16&SID=5BXe2vwEvw2e4zGKJFs&page=3&doc=26
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=16&SID=5BXe2vwEvw2e4zGKJFs&page=3&doc=26
https://doi.org/10.6138/JIT.2015.16.7.20151103c
http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSJK201011002.htm

3538 SongIl Choe et al.: Improved Hybrid Symbiotic Organism Search
Task-Scheduling Algorithm for Cloud Computing

[16] Y Gao, H Guan, Z Qi, Y Hou and L Liu, “A multi-objective ant colony system algorithm for
virtual machine placement in cloud computing,” J. Comput. Syst. Sci, 79(8), pp. 1230–1242,
December, 2013. Article (CrossRef Link)

[17] Raju, R et al, “Minimizing the makespan using hybrid algorithm for cloud computing,” Adv.
Comput. Conf, 7903, pp. 957–962, February, 2013. Article (CrossRef Link)

[18] Zhang Nan, Yang Xiaolong, Zhang Min and Long Keping, “A genetic
algorithm-based task scheduling for cloud resource crowd-funding model,” INTERNATIONAL
JOURNAL OF COMMUNICATION SYSTEMS, 31(1), September, 2017. Article (CrossRef Link)

[19] Y Xu, K Li, J Hu and K Li, “A genetic algorithm for task scheduling on heterogeneous
computing systems using multiple priority queues,” Inf. Sci, 270(6), pp. 255–287, June, 2014.
Article (CrossRef Link)

[20] YS Jiang and WM Chen, “Task scheduling for grid computing systems using a genetic
Algorithm,” Journal of Supercomputing, 71(4), pp. 1357-1377, April, 2015.
Article (CrossRef Link)

[21] Dasgupta and Kousik, “A genetic algorithm (GA) based load balancing strategy for cloud
computing,” Procedia Technol, December, 2013. Article (CrossRef Link)

[22] M Cuppini, “A genetic algorithm for channel assignment problems,” Eur. Trans. Telecommun,
5(2), pp. 285–294, March, 2010. Article (CrossRef Link)

[23] Manasrah Ahmad M and Ali Hanan Ba, “Workflow Scheduling Using Hybrid GA-PSO
Algorithm in Cloud Computing,” WIRELESS COMMUNICATIONS & MOBILE COMPUTING,
3, pp. 1-16, January, 2018. Article (CrossRef Link)

[24] Lin Yang-Kuei and Chong Chin Soon, “Fast GA-based project scheduling for computing
resources allocation in a cloudmanufacturing system,” JOURNAL OF INTELLIGENT
MANUFACTURING, 28(5), pp. 1189-1201, June, 2017. Article (CrossRef Link)

[25] Guan T.T. et al, “Application research of multi objective partice swarm optimization in logistics
distribution,” Nanchang University, Nanchang, 2012.
Article (CrossRef Link)

[26] Gan Na, Huang Yufeng and Lu Xiaomei, “Niching Particle Swarm Optimization Algorithm for
Solving Task Scheduling in CloudComputing,” AGRO FOOD INDUSTRY HI-TECH, 28(3), pp.
876-879, May, 2017.
https://www.researchgate.net/publication/319091663_Niching_particle_swarm_optimization_alg
orithm_for_solving_task_scheduling_in_cloud_computing

[27] Casas I, Taheri J, Ranjan R and Zomaya AY, “PSO-DS: a scheduling engine for scientific
workflow managers,” JOURNAL OF SUPERCOMPUTING, 73(9), pp. 3924-3947, September,
2017. Article (CrossRef Link)

[28] N Sadhasivam, R Balamurugan and M Pandi, “Cancer Diagnosis Epigenomics Scientific
Workflow Scheduling in the CloudComputing Environment Using an Improved PSO Algorithm,”
Asian Pacific journal of cancer prevention : APJCP, 19(1), pp. 243-246, January, 2018.
Article (CrossRef Link)

https://doi.org/10.1016/j.jcss.2013.02.004
https://doi.org/10.1109/iadcc.2013.6514356
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=17&SID=5BXe2vwEvw2e4zGKJFs&page=1&doc=1
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=17&SID=5BXe2vwEvw2e4zGKJFs&page=1&doc=1
https://doi.org/10.1002/dac.3394
https://doi.org/10.1016/j.ins.2014.02.122
https://doi.org/10.1007/s11227-014-1368-6
https://doi.org/10.1016/j.protcy.2013.12.369
https://doi.org/10.1002/ett.4460050219
https://doi.org/10.1155/2018/1934784
https://doi.org/10.1007/s10845-015-1074-
https://doi.org/10.1115/1.859711.paper6
https://www.researchgate.net/publication/319091663_Niching_particle_swarm_optimization_algorithm_for_solving_task_scheduling_in_cloud_computing
https://www.researchgate.net/publication/319091663_Niching_particle_swarm_optimization_algorithm_for_solving_task_scheduling_in_cloud_computing
https://doi.org/10.1007/s11227-017-1992-z
https://doi.org/10.22034/APJCP.2018.19.1.243

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3539

[29] Awad A.I. et al, “Enhanced particle swarm optimization for task scheduling in cloud computing
environments,” Procedia Comput. Sci, 65, pp. 920–929, December, 2015.
Article (CrossRef Link)

[30] Q Cai, D Shan, W Zhao, “Resource scheduling in cloud computer based on improved particle
swarm optimization algorithm,” J. Liaoning Tech. Univ. (Natural Science), January, 2016.
Article (CrossRef Link)

[31] MY Cheng and D Prayogo, “Symbiotic organisms search: a new metaheuristic optimization
algorithm,” Comput Struct, 139, pp. 98–112, July, 2014. Article (CrossRef Link)

[32] Abdullahi Mohammed, Ngadi Md Asri and Abdulhamid Shafi’i Muhammad, “Symbiotic
Organism Search optimization based task scheduling in cloud computing environment,” Future
Generation Computer Systems, 56, pp. 640–650, August, 2015.
Article (CrossRef Link)

[33] Vincent F.Y , Redi A.P. , Yang C.L , Ruskartina E and Santosa B, “Symbiotic organisms search
and two solution representations for solving the capacitated vehicle routing problem,” Applied
Soft Computing, 52, pp. 657–672, October, 2016. Article (CrossRef Link)

[34] Tejani GG et al, “Adaptive symbiotic organisms search (SOS) algorithm for structural design
optimization,” J.Comput Design Eng, 3(3), pp. 226–249, February, 2016.
Article (CrossRef Link)

[35] Hwang Chii-Ruey, “Simulated annealing: theory and applications,” Acta Applicandae
Mathematicae, 37(1), pp. 108–111, 1987. Article (CrossRef Link)

[36] Strobl Maximilian AR and Barker Daniel, “On Simulated Annealing Phase Transitionsin
Phylogeny Reconstruction,” Molecular Phylogenetics and Evolution, 101, pp. 46–55,May, 2016.
Article (CrossRef Link)

[37] Absalom El-Shamir Ezugwu, Aderemi Adewumi and Marc Frincu, “Simulated annealing based
symbiotic organisms search optimization algorithm for traveling salesman problem,” Expert
Systems With Applications, 77, pp. 189–210, February, 2017.
Article (CrossRef Link)

[38] Abdullahi Mohammed and Ngadi Md Asri, “Hybrid Symbiotic Organisms Search Optimization
Algorithm for Scheduling of Tasks on Cloud Computing Environment,” PLoS One, 11(6),
e0158229, Jun, 2016. Article (CrossRef Link)

[39] M Abdullahi, MA Ngadi and SI Dishing, “Chaotic Symbiotic Organisms Search for Task
Scheduling Optimization on Cloud Computing Environment,” in Proc. of Ict International
Student Project Conference on. IEEE, pp. 1-4, May, 2017. Article (CrossRef Link)

[40] Subhodip Saha and V. Mukherjee, “A novel chaos-integrated symbiotic organisms search
algorithm for global optimization,” Soft Computing, 4, pp. 1-20, April, 2017.
Article (CrossRef Link)

[41] Yang D, Li G and Cheng G, “On the efficiency of chaos optimization algorithms for global
optimization,” Chaos Solitons Fract, 34(4), pp. 1366–1375, November, 2007.
Article (CrossRef Link)

https://doi.org/10.1016/j.procs.2015.09.064
https://doi.org/10.11956/j.issn.1008-0562.2016.01.019
https://doi.org/10.1016/j.compstruc.2014.03.007
https://doi.org/10.1016/j.future.2015.08.006
https://doi.org/10.1016/j.asoc.2016.10.006
https://doi.org/10.1016/j.jcde.2016.02.003
https://doi.org/10.1007/BF00047572
https://doi.org/10.1016/j.ympev.2016.05.001
https://doi.org/10.1016/j.eswa.2017.01.053
https://doi.org/10.1371/journal.pone.0158229
https://doi.org/10.1109/ict-ispc.2017.8075340
https://doi.org/10.1007/s00500-017-2597-4
https://doi.org/10.1016/j.chaos.2006.04.057

3540 SongIl Choe et al.: Improved Hybrid Symbiotic Organism Search
Task-Scheduling Algorithm for Cloud Computing

[42] Liu B, Wang L, Jin YH and Huang D, “Improved particle swarm optimization combined with
chaos,” Chaos Solitons Fract, 25(5), pp. 1261–1271, September, 2005.
Article (CrossRef Link)

[43] Xiang T, Liao X and Wong K, “An improved particle swarm optimization algorithm combined
with piecewise linear chaotic map,” Appl Math Comput, 190(2), pp. 1637–1645, July, 2007.
Article (CrossRef Link)

SongIl Choe was born in Huichon, Democratic People’s Republic of Korea, on

August 10, 1986. He received his BSc in Information Science, from Huichon

Industry University in 2007 and his MSc from the College of Information Science,

Kim Il Sung University, PyongYang in 2011. Currently, he is a teacher at Huichon

Industry University and is a PhD candidate at Huichon Industry University. His

research interests include Cloud Computing, Artificial Intelligence, Speech

Processing, Pattern Recognition, and Multimedia Communications.

Bo Li is a professor with the College of Management and Economics at Tianjin

University. She received her bachelor and master degrees in Mathematics and

Computer and System Control from Nankai University, China, in 1989 and 1992,

respectively. She received her doctorate in Management Science and Engineering

from Tianjin University, China, in 2000. Her research interests are Supply Chain

Management and Coordination, and Logistics Optimization and Scheduling.

IlNam Ri received his B.S. and M.S. degree in Information Science from College

of Information Science, Kim Il Sung University, Pyongyang, Democratic People’s

Republic of Korea in 1997 and in 2011, respectively. He is currently a professor at

the College of Information Science, Kim Il Sung University. His research interests

include Computer Network Architecture, Cloud Computing, DBMS, and Web

Technology.

https://doi.org/10.1016/j.chaos.2004.11.095
https://doi.org/10.1016/j.amc.2007.02.103

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 8, August 2018 3541

 ChangSu Paek is a professor of Department of Wireless Communication in

Huichon Industry University. He received his Bachelor’s and Master’s degree in

Wireless Engineering from Huichon Industry University Democratic People’s

Republic of Korea in 1994 and 2000, respectively. He received his Doctor’s degree

of Wireless Engineering from Huichon Industry University, Democratic People’s

Republic of Korea in 2013. His research interests are Wireless Communication and

Network, Digital Signal Processing, and OFDM.

Jusong Rim received his B.S degree from the Department of Control Scienc

e, University of Sciences, Pyongyang, Democratic People’s Republic of Korea

 in 2014. He is currently pursuing his M.S degree with the School of Electri

cal and Information Engineering, Tianjin University, Tianjin, China. His curren

t research interest includes Artificial Intelligence, and Smart Grid.

Subom Yun received his B.S and M.S degree in the Department of Mechanical

Engineering, Huichon Industrial University, Huichon, Democratic People’s Republic

of Korea in 2007 and 2011, respectively. He is now an associate professor with the

Department of Mechanical Engineering, Huichon Industrial University, Huichon,

Democratic People’s Republic of Korea. Area of his current interest includes

Automation Engineering, Mechanical Engineering, and Intelligent Control

Engineering.

