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Abstract 

 
Task scheduling is one of the most challenging aspects of cloud computing nowadays, and it 
plays an important role in improving overall performance in, and services from, the cloud, 
such as response time, cost, makespan, and throughput. A recent cloud task–scheduling 
algorithm based on the symbiotic organisms search (SOS) algorithm not only has fewer 
specific parameters, but also incurs time complexity. SOS is a newly developed 
metaheuristic optimization technique for solving numerical optimization problems. In this 
paper, the basic SOS algorithm is reduced, and chaotic local search (CLS) is integrated into 
the reduced SOS to improve the convergence rate. Simulated annealing (SA) is also added to 
help the SOS algorithm avoid being trapped in a local minimum. The performance of the 
proposed SA-CLS-SOS algorithm is evaluated by extensive simulation using the Matlab 
framework, and is compared with SOS, SA-SOS, and CLS-SOS algorithms. Simulation 
results show that the improved hybrid SOS performs better than SOS, SA-SOS, and 
CLS-SOS in terms of convergence speed and makespan. 
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1. Introduction 

Cloud computing is a model with rapid growth in recent years, increasing due to 

technological developments in distributed computing, grid computing, and parallel 
computation. Cloud computing is a model that can obtain resources quickly from a 
configurable shared resources pool of servers, storage, networks, services, and applications 
in real time and based on demand. The supply and release of resources can finish in a shorter 
time to reduce the load on resource management and to keep the interactions between service 
providers to a minimum [1].  

The basic principles of task scheduling in the cloud are to break down the tasks reported 
by masses of users into smaller tasks via the network, using multiple computers connected to 
the network to search, compute, and combine the results, and then send them back to the 
users. In recent decades, task scheduling has attracted increased attention and has become a 
very challenging research field. In the process of task scheduling, users submit their jobs to 
the cloud scheduler, which checks the cloud information service for the status of available 
resources and their properties and then allocates various tasks to different resources per their 
requirements. The goal of scheduling is to map tasks to appropriate resources that optimize 
one or more objectives. Therefore, the task scheduling problem in cloud computing belongs 
to a category known as NP-hard problems, owing to the large solution space and the dynamic 
nature of heterogeneous resources [2,3,4]. Thus, it constitutes one of the crucial aspects of a 
resource management system in cloud computing, which ensures attainment of general 
quality of service in terms of response time, total execution time (makespan), and throughput, 
among other things. In addition, appropriate task scheduling is effective in reducing the 
operational costs of cloud service providers in terms of energy consumption and resource 
utilization.  

Task scheduling problems in the cloud have been tackled using heuristic and metaheuristic 
algorithms.  

Heuristic algorithms provide optimal solutions for small problems; but the solutions 
produced by these algorithms are far from optimal as the size of the problem increases [5-8].  
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Metaheuristic algorithms have achieved remarkable success in providing near optimal 
solutions for task scheduling, and they have since drawn the attention of several researchers 
[9-11]. However, metaheuristic algorithms still suffer from issues like entrapment in local 
optima, premature convergence, slow convergence, or imbalances between local and global 
searches.  

Hence, there is scope for further development of task scheduling algorithms in the quest 
for improved solutions. To solve task scheduling problems now, many metaheuristic 
algorithms are used, such as ant colony optimization (ACO) [12-15], the genetic algorithm 
(GA) [18-22], particle swarm optimization (PSO) [25-27], plus variations on, and hybrids of, 
these methods [16,17,23-31 ]. A GA simulates natural evolutionary processes [20,22]; PSO 
simulates the behaviors of flock foraging [25, 29], and ACO imitates the foraging behavior 
of a real ant colony [12,15]. Recently, some researchers have proposed symbiotic organisms 
search (SOS) algorithms [31-34]—nature-inspired, swarm-based optimization algorithms 
imitating the natural symbiotic interactions between different living things. One major 
advantage of SOS is that it needs only one control variable (eco-size or population size) in 
comparison with other popular optimization techniques that surfaced earlier [31]. Also, the 
basic structure of the SOS algorithm is simple and easy to implement. This has made the 
SOS algorithm popular among many metaheuristic algorithms in recent years, and it has 
shown improved performance in solving different types of optimization problems [34]. 
Therefore, the potential for SOS to find a global solution to optimization problems exhibited 
so far makes it attractive for further investigation and exploration. The quality of solutions 
and convergence speed obtained by metaheuristic algorithms can be improved by its 
hybridization with either another metaheuristic algorithm or the local search method, and by 
generating an initial solution using heuristic search techniques or by modifying the transition 
operator [6-11]. To the best of our knowledge, none of the aforementioned techniques have 
been explored to investigate the possible improvement of SOS in terms of convergence 
speed and the quality of solutions obtained by SOS. In this paper, we study a new task 
scheduling algorithm using an improved simulated annealing (SA) chaotic local search (CLS) 
symbiotic organisms search (SA-CLS-SOS). The proposed SA-CLS-SOS algorithm 
combines the SA method [35-38] and the CLS method [39-43] with the SOS optimization 
algorithm. In this paper, the basic SOS algorithm is reduced, and CLS is integrated into the 
reduced SOS to improve the convergence rate of the basic SOS algorithm. Also, SA is 
combined in order to help SOS avoid being trapped in a local minimum. 

The performance of the proposed SA-CLS-SOS algorithm is evaluated via extensive 
simulations using a Matlab simulation framework, and is compared with SOS, SA-SOS, and 
CLS-SOS. Simulation results show that the hybrid SOS performs better than SOS, SA-SOS, 
and CLS-SOS in terms of convergence speed and makespan. The main contributions of this 
paper are as follows. 
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• Clearer presentation of SOS, SA, and CLS procedures for scheduling of tasks in a cloud 
computing environment. 
• Proposal of a new cloud task–scheduling method called SA-CLS-SOS. 
• Performance comparison of the proposed hybrid method with other algorithms (SOS, 
SA-SOS, CLS-SOS). 
• Descriptive statistical validation of the SA-CLS-SOS results against other selected methods 
using a significance test. 
The remainder of this paper is organized as follows. Metaheuristic algorithms that have been 
applied to task scheduling problems in the cloud (SOS, SA, CLS) are presented in Section 2. 
Section 3 describes the task scheduling model in cloud computing, and detailed 
implementation of the improved hybrid SA-CLS-SOS algorithm for task scheduling in cloud 
computing is presented in Section 4. The simulation results and discussions are in Section 5. 
Section 6 presents the conclusion to the paper. 

2. Related Work 

In computing, scheduling is a method by which work specified by some means is assigned 
to resources that complete the work. It may be virtual computation elements, such as threads 
and processors, or data flows which are in turn scheduled onto hardware resources such as 
processors. Schedulers allow multiple users to share system resources properly, or to achieve 
good quality of service. Scheduling is fundamental to computation, and is an internal part of 
the execution model of a computer system. The concept of scheduling makes possible 
computer multitasking with a single central processing unit. Preference is given to any one of 
the concerns mentioned above, depending upon the user's needs and objectives.   

Cloud computing is a model with rapid growth in recent years, increasing due to 
technological developments in distributed computing, grid computing and parallel 
computation. Task scheduling is the main problem in cloud computing. In recent decades, 
task scheduling has attracted increasing attention and has become a challenging research 
field. However, task scheduling in the cloud is an NP-hard problem, and thus, it constitutes 
one of the crucial aspects of a resource management system in cloud computing, which 
ensures attainment of general quality of service in terms of response time, total execution 
time (makespan), and throughput, among other things. In addition, appropriate task 
scheduling is effective in reducing the operational costs of cloud service providers in terms 
of energy consumption and resource utilization.  

Task scheduling problems in the cloud have been tackled using heuristic and metaheuristic 
algorithms.  
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Heuristic algorithms provide optimal solutions for small problems, but the solutions 

produced by these algorithms are far from optimal as the size of the problem increases [6-8].  
Metaheuristic algorithms have achieved remarkable success in providing near optimal 

solutions for task scheduling, and they have since drawn the attention of several researchers 
[9,10,11]. Metaheuristic methods have been applied to solve task assignment problems in 
order to reduce makespan and response time. The methods were proved able to find an 
optimum mapping of tasks to resources, which reduces the cost of computation, improves 
quality of service, and increases utilization of computing resources. 

 

2.1 Symbiotic Organism Search algorithm 

The SOS algorithm was inspired by symbiotic interactions between paired organisms in an 
ecosystem. Each organism denotes a potential solution to an optimization problem under 
consideration, and has its position in the solution space. Organisms adjust their positions 
according to mutualism, commensalism, or parasitism interaction models in the ecosystem. 
With the mutualistic form of interaction, two interacting organisms both benefit from the 
relationship; this is applied to the first phase of the algorithm. Commensalism is where one 
organism benefits from the relationship while other is not harmed. Commensalism is applied 
to the second phase of the algorithm to fine-tune the solution space. With parasitism, only 
one organism benefits while the other is harmed. Parasitism interaction is applied in the third 
phase of the algorithm. The fittest organisms survive in the solution space, whereas unfit 
ones are eliminated. The best organisms are identified as those that benefit from all three 
phases of the interaction. The phases of the procedure are continuously applied on the 
population of “organisms” that represent candidate solutions until the stopping criteria are 
reached. Each organism within an ecosystem is represented by a vector in the solution plane. 
Each organism in the search space is assigned a value that suggests the extent of adaptation 
to the sought objective. The algorithm repeatedly uses a population of the possible solutions 
to converge to an optimal position where the global optimal solution lies. The algorithm used 
mutualism, commensalism, and parasitism to update the positions of the solution vector in 
the search space. SOS is a repetitive process for an optimization problem [30], as given in 
Definition 2.1. The procedure keeps a population of candidate solutions to the studied 
problem. The relevant information concerning the decision variables and fitness values is 
encapsulated into the organism as an indicator of its performance. Essentially, the 
trajectories of the organisms are modified using the phases of symbiotic association. 
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Definition 2.1. Given a function f：D → R   X ′ ∈ D:∀X ∈ Df�X ′� ≤ or ≥ f(X)  ≤

(≥)minimization(maximization) 
where f is an objective function to be optimized, and D represents the search space, while 
the elements of D are the feasible solutions.  X is a vector of optimization variables, 
X = {x1, x2, x3,⋯ , xn}. An optimal solution is a feasible solution,  X ′, that optimizes f. 

The steps of the symbiotic organism search algorithm are given below. 
Step 1: Ecosystem initialization 
The initial population of the ecosystem is generated, and other control variables, such as 

ecosystem size and maximum number of iterations, are specified. The positions of the 
organisms in the solution space are represented by real numbers. 

 
Step 2: Selection  
The organism with the best fit objective function is represented as xbest. 
Step 3: Mutualism phase 
In the i’th iteration, an organism, xj, is randomly selected from the ecosystem to interact 

with an organism, xi, for mutual benefit, where i ≠ j according to (1) and (2): 
xi′ = xi + rand(0,1) × (xbest − Mutualvect × k1)                         (1) 

xj′ = xj + rand(0,1) × (xbest − Mutualvect × k2)                         (2) 

The mutual vector is expressed as 

Mutualvect = xi+xj
2

                                                 (3) 

The rand(0,1) function is a vector of uniformly distributed random numbers between 0 
and 1. The values of benefit factors k1 and k2 are determined randomly as either 1 or 2, 
and represent the level of benefit to each of the two organisms, xi and xj (where 1 and 2, 
respectively, denote an adequate and a huge benefit that can be received by both xi and xj 
in their current mutual symbiotic states). The organism with the best objective or fitness 
function value in terms of the degree of adaptation in the ecosystem is represented by xbest . 
Mutualvect signifies mutualistic characteristics exhibited between the two organisms to 
increase their survival advantage. It should be noted that any update for any one of the two 

organisms is computed only if its new fitness function value, denoted by f�xi′� or f(xj′), is 

better than the previous solutions, f(xi) and f(xj).  
Given the above, Eqs. (1) and (2) become 

xi′ = xi + rand(0,1) × �xbest −Mutualvect × k1�,  if    f�xi′� > 𝑓𝑓(xi)         (4) 

xj′ = xj + rand(0,1) × (xbest − Mutualvect × k2),  if    f�xj′� > 𝑓𝑓�xj�        (5) 

Step 4: Commensalism phase 
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In this phase, organism xi (selected randomly from the ecosystem) strives to increase its 
benefits from the association with xj. This kind of symbiotic association only places xi at 
an advantage over xj, even though xj is not harmed in the process. The new solution 
emanating from the symbiotic relationship is calculated as shown in Eq. (6): 

xi′ = xi + rand(−1,1) × �xbest − xj�  if    f�xi′� > 𝑓𝑓(xi)              (6) 
Step 5: Parasitism phase  
In the i’th iteration, a parasite vector, 𝑥𝑥𝑝𝑝 , is created by mutating 𝑥𝑥𝑖𝑖 using a randomly 

generated number in the range of the decision variables under consideration, and organism 
𝑥𝑥𝑖𝑖 with 𝑖𝑖 ≠ 𝑗𝑗 is selected randomly from the population to serve as host to 𝑥𝑥𝑝𝑝. If the fitness 
value 𝑓𝑓(𝑥𝑥𝑝𝑝) is greater than 𝑓𝑓(𝑥𝑥𝑗𝑗), then 𝑥𝑥𝑝𝑝 will replace 𝑥𝑥𝑗𝑗; otherwise, 𝑥𝑥𝑝𝑝 is discarded. 

Steps 2 through 5 are repeated until the stopping criterion is reached. 
Step 6: Stopping criterion 
The pseudocode of SOS is presented in Algorithm 1. 
 

Algorithm 1. Symbiotic Organism Search Algorithm 
Create and initialize the population of organisms in ecosystem 𝑋𝑋 = {𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,⋯ , 𝒙𝒙𝑵𝑵} 
Set up stopping criterion 
iteration_number← 𝟎𝟎  
𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 ← 𝟎𝟎  
Do 
   𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊_𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 ← 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊_𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 + 𝟏𝟏 
   𝒊𝒊 ← 𝟎𝟎 
        Do 
           𝒊𝒊 ← 𝒊𝒊 + 𝟏𝟏 
           For 𝒋𝒋 = 𝟏𝟏 𝒕𝒕𝒕𝒕 𝑵𝑵 
               𝑰𝑰𝑰𝑰  𝒇𝒇�𝒙𝒙𝒋𝒋� > 𝒇𝒇�𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃� 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻 // 𝒇𝒇(𝒙𝒙) 𝒊𝒊𝒊𝒊 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 
                    𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 ← 𝒙𝒙𝒋𝒋 
               End if 

End for 
//mutualism phase 
Randomly select 𝒙𝒙𝒋𝒋 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒊𝒊 ≠ 𝒋𝒋 
    𝒌𝒌𝟏𝟏 ← 𝟏𝟏 𝒐𝒐𝒐𝒐 𝟐𝟐  
    𝒌𝒌𝟐𝟐 ← 𝟏𝟏 𝒐𝒐𝒐𝒐 𝟐𝟐  

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 = 𝒙𝒙𝒊𝒊+𝒙𝒙𝒋𝒋
𝟐𝟐

  

  𝒙𝒙𝒊𝒊′ = 𝒙𝒙𝒊𝒊 + 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝟎𝟎,𝟏𝟏) × (𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 −𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 × 𝒌𝒌𝟏𝟏)    

  𝒙𝒙𝒋𝒋′ = 𝒙𝒙𝒋𝒋 + 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝟎𝟎,𝟏𝟏) × (𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 − 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗 × 𝒌𝒌𝟐𝟐)  

𝑰𝑰𝑰𝑰  𝒇𝒇�𝒙𝒙𝒊𝒊′ � > 𝒇𝒇(𝒙𝒙𝒊𝒊)  𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻   
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    𝒙𝒙𝒊𝒊 ← 𝒙𝒙𝒊𝒊′  
End if 

𝑰𝑰𝑰𝑰  𝒇𝒇�𝒙𝒙𝒋𝒋′ � > 𝒇𝒇�𝒙𝒙𝒋𝒋�  𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻   

    𝒙𝒙𝒋𝒋 ← 𝒙𝒙𝒋𝒋′  

End if 
//commensalism phase 
Randomly select 𝒙𝒙𝒋𝒋  𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘  𝒊𝒊 ≠ 𝒋𝒋 
𝒙𝒙𝒊𝒊′ = 𝒙𝒙𝒊𝒊 + 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(−𝟏𝟏,𝟏𝟏) × �𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 − 𝒙𝒙𝒋𝒋�   
𝒊𝒊𝒊𝒊    𝒇𝒇�𝒙𝒙𝒊𝒊′ � > 𝒇𝒇(𝒙𝒙𝒊𝒊) The 
    𝒙𝒙𝒊𝒊 ← 𝒙𝒙𝒊𝒊′  
End if 
//parasitism phase 
Randomly select 𝒙𝒙𝒋𝒋  𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘  𝒊𝒊 ≠ 𝒋𝒋 
Create parasite vector 𝒙𝒙𝒑𝒑 from 𝒙𝒙𝒊𝒊 using random number 
𝑰𝑰𝑰𝑰  𝒇𝒇(𝒙𝒙𝒑𝒑) > 𝒇𝒇(𝒙𝒙𝒊𝒊)  𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻  
    𝒙𝒙𝒋𝒋 ← 𝒙𝒙𝒑𝒑 
End if 
     While 𝒊𝒊 <= 𝑵𝑵 
While stopping condition is not true 

 
 

The SOS algorithm is thought to be efficient at solving complex optimization and discrete 
engineering problems, but it still has a high probability of plunging to the local optimum [30]. 
Therefore, the SOS-SA algorithm was proposed to overcome this shortcoming. 

 
2.2 Simulated annealing algorithm 
Simulated annealing is used to further process the result from SOS to avoid falling into the 

local optimal solution [33,34].The process begins by considering a solution space, 𝑺𝑺 , of a 
particular tour through the set of given cities or points,  𝒙𝒙𝒊𝒊|𝒊𝒊 = 𝟏𝟏,𝟐𝟐,⋯ ,𝒏𝒏, with update 
solutions 𝒙𝒙𝒊𝒊′  created by randomly switching the orders of two cities. The energy function or 
fitness function, which represents the length of route 𝒙𝒙𝒊𝒊, is denoted by 𝒇𝒇(𝒙𝒙𝒊𝒊). The relative 

change in cost, ∆𝒇𝒇, between 𝒙𝒙𝒊𝒊 and 𝒙𝒙𝒊𝒊′   is expressed as ∆𝒇𝒇 = 𝒇𝒇�𝒙𝒙𝒊𝒊
′ �−𝒇𝒇(𝒙𝒙𝒊𝒊)
𝒇𝒇(𝒙𝒙𝒊𝒊)

. Beginning with 

the initial solution, only the solution that results in a smaller energy value than the previous 
solution is accepted by the algorithm; in other words, a solution is only accepted with a 
fitness value of 𝒇𝒇(𝒙𝒙𝒊𝒊′ ) < 𝒇𝒇(𝒙𝒙𝒊𝒊). However, accepting or rejecting a new solution with higher 
fitness values for 𝒙𝒙′ can be based on the acceptance probability function, given as follows: 
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𝑷𝑷(∆𝒇𝒇,𝑻𝑻𝒌𝒌) = � 𝒆𝒆
�−∆𝒇𝒇𝑻𝑻𝒌𝒌

�
, ∆𝒇𝒇 > 𝟎𝟎 

𝟏𝟏,             ∆𝒇𝒇 ≤ 𝟎𝟎 
  for 𝑻𝑻𝒌𝒌 > 𝟎𝟎                      (7) 

where 𝑻𝑻𝒌𝒌 is the parameter temperature at the 𝒌𝒌𝒕𝒕𝒕𝒕 instance of accepting a new solution 
route, and for any given T, for ∆𝒇𝒇 > 𝟎𝟎, P is greater for smaller values of ∆𝒇𝒇, which means 
that, for the new solution 𝒙𝒙𝒊𝒊′  that is only slightly more costly than the current solution, 𝒙𝒙𝒊𝒊 is 
more likely to be accepted than a new solution 𝒙𝒙𝒊𝒊′  that is much more costly than current 
solution 𝒙𝒙𝒊𝒊 . The value of T, which is an important control parameter, decreases in 

proportion to P ; that is, as 𝒍𝒍𝒍𝒍𝒍𝒍𝑻𝑻→𝟎𝟎+𝒆𝒆
(−∆𝒇𝒇𝑻𝑻𝒌𝒌

)
= 𝟎𝟎,∆𝒇𝒇 > 𝟎𝟎. Therefore, as the value of T 

decreases, the probability of accepting a degraded route also decreases. In this paper, the 
following cooling schedule is adopted:  

𝑻𝑻𝒌𝒌+𝟏𝟏 = 𝜶𝜶𝑻𝑻𝒌𝒌                             (8) 
where 𝛂𝛂  denotes the cooling coefficient, which is some random constant value between 0 
and 1, and it is also the rate at which the temperature is lowered each time new solution 𝒙𝒙𝒊𝒊′  
is discovered. The SA procedure is presented in Algorithm 2. 

 
Algorithm 2. Pseudocode for SA. 

Input : Initial temperature 𝑻𝑻𝟎𝟎, final temperature 𝑻𝑻𝒌𝒌 , cooling rate α, maximum iteration 
maxiter 

 Output : Best cost  
1: Chose a random route 𝒙𝒙𝒊𝒊 and initialize 𝑻𝑻𝟎𝟎T 0 and α  
2: For counter = 1 to maxiter  
3: Create a new solution 𝒙𝒙𝒊𝒊′  by randomly swapping two cities in neighborhood of 𝒙𝒙𝒊𝒊 

4: Compute ∆𝒇𝒇 = 𝒇𝒇�𝒙𝒙𝒊𝒊
′ �−𝒇𝒇(𝒙𝒙𝒊𝒊)
𝒇𝒇(𝒙𝒙𝒊𝒊)

 and use the acceptance probability function to either accept 

or reject 
 the new solution, based on the following conditions:  

a) if ∆𝒇𝒇 ≤ 𝟎𝟎, 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕  𝒙𝒙𝒊𝒊 ← 𝒙𝒙𝒊𝒊′   
b) if ∆𝒇𝒇 > 𝟎𝟎, 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒙𝒙𝒊𝒊 ← 𝒙𝒙𝒊𝒊′  depending on Eq. (7)  

5: Reduce the temperature using Eq. (8) and increment k 
6: Update the best solution  
7: End for 
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2.3. Chaotic local search algorithm 
Chaos is a deterministic process that is usually found in dynamic and nonlinear systems; it 

has high sensitivity to initial conditions and parameter changes. Chaos is characterized by 
randomness, ergodicity, irregularity, and apparent unpredictability. Chaos is known as 
randomness in a simple dynamic system, which motivates its usage as a source of 
randomness in optimization theory and other various fields instead of the usual random 
process. Chaotic sequences have been employed in stochastic optimization techniques to 
provide population diversity in a search space to ensure global convergence, as well as to 
avoid local optima entrapment. Chaotic sequences are highly sensitive to their initial values. 
It is quite important to select the initial value for the chaotic map very precisely. In chaotic 
PSO (CPSO) [39], the decision variables of PSO are mapped into the chaotic domain with 
Eq. (9): 

𝒄𝒄𝒄𝒄𝒊𝒊 = (𝒙𝒙 − 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎)/(𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎)                            (9) 
where 𝒄𝒄𝒄𝒄𝒊𝒊 is the initial value of the chaotic sequence, x is the position of the particle, and 
𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 and 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎  are the search boundaries. But this mapping may lead to ineffectiveness of 
the chaotic search as the initial value of the chaotic sequence becomes fixed, and hence, the 
whole chaotic orbit becomes monotonous. CLS is activated when the best solution, obtained 
by PSO over the entire population, does not change for several times [40]. In this case, u 
becomes fixed, and hence, the chaotic search orbit will always be the same before the next 
chaotic search. This will worsen the performance of the chaotic search. To avoid this 
problem and to maintain the ergodicity of the chaotic search, Saha and Mukherjee suggested 
usage of a random function to generate the initial value of the chaotic sequence [40]. So, the 
initial value of the chaotic sequence is 

𝒄𝒄𝒄𝒄𝒊𝒊 = 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝟎𝟎,𝟏𝟏)                                          (10) 
As chaotic search is most efficient in a small range [38], CLS in the proposed CSOS of the 

present work is performed over a small radius, r. CLS is only applied to the best organism 
(𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃) as achieved after the commensalism phase of the reduced SOS optimizer. This is 
because (𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃−r, 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 +r ) would be the most promising range for the local search. 
Moreover, it saves more time, compared with the methods that apply chaotic search on all 
the particles. Chaotic search radius r is defined initially by Eq. (11), and then, it is 
subsequently decreased in the next generations with the help of a shrinking coefficient, 
𝜹𝜹(𝟎𝟎 < 𝜹𝜹 < 𝟏𝟏), to shrink the search area [34]: 

 
𝒓𝒓 = (𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎 − 𝒙𝒙𝒎𝒎𝒎𝒎𝒎𝒎)/𝟐𝟐                               (11) 

The initial variable of the chaotic sequence (that is, 𝒄𝒄𝒄𝒄𝒊𝒊) is generated by using Eq. (10), 
and the next variable of that chaotic sequence (i.e. 𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏) is generated by using Piecewise 
Linear Chaotic Map (PLCM). PLCM is formulated in Eq. (12) [38]: 

 
 



3526                          SongIl Choe et al.: Improved Hybrid Symbiotic Organism Search  
Task-Scheduling Algorithm for Cloud Computing 

 

𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏 = �

𝒄𝒄𝒄𝒄𝒊𝒊
𝒒𝒒

                   𝒄𝒄𝒄𝒄𝒊𝒊 ∈ (𝟎𝟎,𝒒𝒒)
(𝟏𝟏−𝒄𝒄𝒄𝒄𝒊𝒊)
(𝟏𝟏−𝒒𝒒)

       𝒄𝒄𝒄𝒄𝒊𝒊 ∈ (𝒒𝒒,𝟏𝟏)
                          (12) 

where q is the control parameter (q∈ 0, 0.5). 

The distributions of two different chaotic maps are shown in Fig. 1 over 500 time steps 
(Fig. 1a is a logistic map, and Fig. 1b is the PLCM [40]). The chaotic map that is used here 
to generate the chaotic sequence is the simple PLCM. PLCM is ergodic in nature (see Fig. 
1b) and has a uniform invariant density function. It is easy to implement, and it depicts very 
good dynamic behavior, which makes it superior to the well-known logistic map (Fig. 1a) 
[40]. 

 

 
(a)                              (b) 

Fig. 1. Distribution of chaotic maps for (a) a logistic map, and (b) PLCM. 
 

Using Eq. (13), the chaotic variables generated by PLCM are mapped back to the search 
range around the best organism: 

 
𝒙𝒙𝒊𝒊+𝟏𝟏 = 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 + 𝒓𝒓(𝟐𝟐𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏 − 𝟏𝟏)                            (13) 

 
where 𝒙𝒙𝒊𝒊+𝟏𝟏 is the position of the best organism over the entire population at the (i +1)th 
generation of CLS, and 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 is the position of the best organism in the ecosystem after the 
traditional SOS. The fitness value is calculated for organism 𝒙𝒙𝒊𝒊+𝟏𝟏, and it will be considered 
the best organism if it provides better fitness than the previous best organism. The CLS 
procedure is presented in Algorithm 3. 
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Algorithm 3. Chaotic Local Search Pseudocode 
Set i=0 
Initialize chaotic variable 𝒄𝒄𝒄𝒄𝒊𝒊 = 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝟎𝟎,𝟏𝟏) 
Set chaotic search radius r with Eq. (11) 
do 

Calculate 𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏 by (12) 
Map 𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏  back to the range around the best organism using    𝒙𝒙𝒊𝒊+𝟏𝟏 = 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 +

𝒓𝒓(𝟐𝟐𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏 − 𝟏𝟏)  
Evaluate fitness value for 𝒙𝒙𝒊𝒊+𝟏𝟏  

while a better solution is found, or the maximum number of iterations is 
reached 

Decrease the radius of the chaotic search space by 𝒓𝒓 = 𝜹𝜹 × 𝒓𝒓 
                                         // 𝜹𝜹 is a random number between 0 and 

1 
 

3. Task Scheduling Model in Cloud Computing 

To simplify the complexity of the problem and establish an effective task scheduling 
model, we make the following assumptions. Tasks submitted by the users are indivisible 
meta-tasks; furthermore, each task is an independent operation and does not run on priority; 
the number of tasks submitted by users in cloud computing is far greater than for virtual 
machines in a cloud datacenter; the execution time of tasks in a virtual machine (VM) can be 
calculated according to the information processing speed, in millions of instructions per 
second (MIPS). To establish a mathematical model of facilitated task scheduling, we 
established the related parameters of the tasks and the virtual machines as follows. 

Task set T = {Task1, Task2, Task3,⋯ , Taski,⋯ , Taskm} = {Taski|i > 0, 𝑖𝑖 ∈ [1, m]} , 
where m is the number of tasks submitted by the users. Taski represents the i’th task in 
the task sequence. The feature of Taski is defined as {TKi, task_lengthi, Time_expi, Pi}, in 
which TKi is the serial number of tasks, and task_lengthi is the instruction length of the 
task in millions of instructions (MI). Time_expi refers to the user’s expected completion 
time for Taski, and Pi refers to the task priority. 

The VM set is VM = �vm1, vm2, vm3,⋯ , vmj,⋯ , vmn� = �vmj�j > 0, 𝑗𝑗 ∈ [1,𝑛𝑛]�, where 
n is the number of virtual machines, and vmj denotes the j’th virtual machine resource in 
the cloud environment. The feature of vmj is defined as �VMj, MIPSj�, in which VMj is the 
serial number of the virtual machine, and MIPSj is the information processing speed in 
MIPS of the virtual machine. 
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The tasks are scheduled on the available VMs, and execution of the tasks is done on a 
first-come first-served basis. Our aim is to schedule tasks on VMs in order to achieve high 
utilization with a minimal makespan. As a result, the expected time to compute (ETC) of the 
tasks to be scheduled on each VM will be used by the proposed method to make scheduling 
decisions. ETC values were determined using the ratio of the MIPS of the VM to the length 
of the task. 

ETC values are usually represented in matrix form, as follows: 
 

ETC = �
ETC11 ⋯ ETC1n
⋮ ⋱ ⋮

ETCm1 ⋯ ETCmn
�                                 (14) 

 
where the number of tasks to be scheduled appears in the rows of the matrix, and the number 
of available VMs appears in the columns of the matrix. Each row of the ETC matrix 
represents execution times of the given tasks for each VM, while each column represents 
execution times of the tasks on a given VM. Our objective is to minimize the makespan by 
finding the best group of tasks to be executed on VMs. 

Let ETCij, i = 1,2,⋯ , m, j = 1,2,⋯ , n be the execution time of executing the i’th task on 
the j’th VM.  

Then ETCij is calculated as follows: 
 

ETCij = task_lengthi MIPSj⁄                              (15) 
 

The fitness value of each organism is determined using Eq. (16), which determines the 
strength of the level of adaptation of the organism to the ecosystem: 

 

objective function = max �∑ f�Mj�
n

n
j=1 �                      (16) 

f�Mj� = μ
makespan

                                     (17) 

μ = ∑ λj
n

n
j=1                                           (18) 

λj = Taskj
makespan

                                       (19) 

makespan = max�ETCij�i ∈ T, i = 1,2,3,⋯ , m; j ∈ VM, j = 1,2,3,⋯ , n �       (20) 
 

In Eq. (17), f�Mj� is the fitness value of virtual machine j, and μ is the average 
utilization of virtual machines ready for the execution of tasks. The essence is to support load 
balancing among VMs, so λj defines the utilization of virtual machine j. 
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For the degree of imbalance, let Tmax, Tmin, and Tavg denote the sums of the maximum, 
minimum, and average execution times, respectively, for all VMs. The degree of imbalance 
(DI) defines the extent of the load distribution among the VMs according to their processing 
capacities, and is determined with Eq. (21): 

 

DI = Tmax−Tmin
Tavg

                                 (21) 

4. Hybrid SA-CLS-SOS Algorithm for task Scheduling in Cloud 
Computing 

The SA-CLS-SOS algorithm is a hybrid of symbiotic organisms search, simulated 
annealing, and chaotic local search. CLS is employed after the commensalism phase, 
replacing the parasitism phase of SOS. In the mutualism phase, two new candidate solutions 
are generated, whereas during commensalism, one new candidate solution is generated based 
on the previous best solution or organism in the ecosystem. In both the mutualism and 
commensalism phases, the new candidate solutions or organisms are accepted if they have 
better fitness values than the previous best organism, and these newly generated organisms 
direct the search process over the unvisited portion of the entire search space. In short, the 
mutualism and commensalism phases provide better exploration of the search space. On the 
other hand, in the parasitism phase, the current best organism from the commensalism phase 
is duplicated to act as a parasite vector, and it interacts with a randomly chosen organism 
from the ecosystem. If the randomly chosen organism has a better fitness value than the 
parasite vector, it will remain in the ecosystem; otherwise, it will be destroyed. This may 
lead to loss of a potential solution in case of any improper duplicating of a parasite vector or 
any ineffective interaction that cannot produce a better solution over a number of generations. 
This will affect computational efficiency and will take an unnecessarily longer computation 
time. In contrast, with CLS, the search process is intensified towards a promising region that 
enhances the exploitation of the search space. As a result, a better solution may be found 
more quickly. Also, SA is a local-search metaheuristic algorithm widely used for solving 
both discrete and continuous optimization problems. One of the main benefits of SA lies in 
its ability to escape the problem of getting stuck in a local minimum by allowing 
hill-climbing moves to search for a global solution. Therefore, the hybrid approach is 
proposed by introducing SA to assist SOS in avoiding being trapped in a local minimum, and 
to increase its level of diversity while searching for the optimum solution in the problem 
search space. Thus, the new hybrid algorithm (SA-CLS-SOS) is proposed to improve task 
scheduling optimization in cloud computing. 

 
The steps of the hybrid SA-CLS-SOS algorithm are described in Algorithm 4. 
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Algorithm 4. SA-CLS-SOS Pseudocode 
Input: Initial ecosystem x , ecosystem size eco _ size, initial temperature 𝐓𝐓𝟎𝟎 , final 

temperature 𝐓𝐓𝐤𝐤, 
 cooling rate 𝛂𝛂, maximum iteration maxiter  

Initialize chaotic variable 𝒄𝒄𝒄𝒄𝒊𝒊 = 𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝟎𝟎,𝟏𝟏) ; set chaotic search radius r with Eq. (11) 
Output: best known solution 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 

1: Create and evaluate new solutions 
Generate 𝒙𝒙𝒊𝒊, i = 1 , 2 , . . . , eco _ size  
For i = 1 to maxiter  

a) Compute cost / fitness function of 𝒙𝒙𝒊𝒊 , 𝒇𝒇(𝒙𝒙𝒊𝒊) 
b) Determine best solution 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 

d) Compute ∆𝒇𝒇 = 𝒇𝒇�𝒙𝒙𝒊𝒊
′ �−𝒇𝒇(𝒙𝒙𝒊𝒊)
𝒇𝒇(𝒙𝒙𝒊𝒊)

 

If  ∆𝒇𝒇 ≤ 𝟎𝟎 𝒐𝒐𝒐𝒐 𝒑𝒑 > 𝒖𝒖, where p is the acceptance probability from Eq. (7), and u is a 
random number 
 between 0 and 1  

then update solution by assigning 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 ← 𝒙𝒙𝒊𝒊 
End if  
For i = 1 to eco _ size 
 2: Update organism (route) with SA (Algorithm 2) on the two SOS phases in Algorithm 1  
For i =1 to eco _ size  
   a) Modify the organisms according to (1) and (2) in mutualism phase 
   b) Modify organism 𝒙𝒙𝒊𝒊 with the help of 𝒖𝒖𝒋𝒋 using (6) in commensalism phase 
   c) Update best organism 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 
3: Update best organism 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 using CLS in Algorithm 3 
do 

Calculate 𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏 by (12) 
Map 𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏 back to the range around the best organism using 

   𝒙𝒙𝒊𝒊+𝟏𝟏 = 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 + 𝒓𝒓(𝟐𝟐𝒄𝒄𝒄𝒄𝒊𝒊+𝟏𝟏 − 𝟏𝟏)  
Evaluate fitness value for 𝒙𝒙𝒊𝒊+𝟏𝟏  

while a better solution is found or maximum number of iterations is reached 
Decrease the radius of the chaotic search space by 𝑟𝑟 = 𝛿𝛿 × 𝑟𝑟 
4: Update the best 𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ever found   
5: Update temperature using the cooling schedule given in Eq. (8)  
5: End for  
6: End for  
7: End for 
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The hybrid algorithm is initialized by random solutions and searches for the optimization 
solution by the search process intensified towards a promising region that enhances the 
exploitation of the search space. Also, the hybrid algorithm escapes the problem of getting 
stuck in a local minimum by allowing hill-climbing moves to search for a global solution. 
During this course, an evolution of this solution is performed by integrating SA, CLS, and 
SOS.  

The SOS optimization strategy is performed in three search-and-update phases (i.e., mutualism, 
commensalism, and parasitism) as presented subsequently. In Algorithm 4, step 1 is SA. The SA 
technique is employed in the solution search procedure of the mutualism and commensalism 
phases of SOS. This procedure is presented in step 2. Then, CLS is employed after the 
commensalism phase, replacing the parasitism phase of SOS. In step 3, this procedure is 
presented.  

  5. Simulation and Results 

In order to test the performance of the proposed method, simulations were carried out 
using the Matlab R2017a_win64 computing environment on a 3.2 GHz core i5 personal 
computer with 4 GB of random access memory (RAM). 

One datacenter was created containing two hosts. Each host had 20 GB RAM, 1 TB 
storage, 10 GBps bandwidth, and a time-shared VM scheduling algorithm. One host was a 
dual-core machine, while the other was a quad-core machine, each with the X86 architecture, 
a Linux operating system, a Xen virtual machine monitor (VMM), and cumulative 
processing power of 1,000,000 MIPS. Twenty VMs were created, each with an image size of 
10 GB, with 0.5 GB memory, 1 GBps bandwidth, and one processing element. The 
processing power of the VMs ranged from 100 MIPS to 5000 MIPS. A time-shared cloudlet 
scheduler and the Xen VMM were used for all the VMs. Task sizes were generated in a 
uniform distribution, which depicts an equal number of large, medium-size, and small tasks. 
For the uniform distribution, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 instances 
were generated. The larger instances enabled us to gain insight into the scalability of the 
performance of the algorithms with large problem sizes.  

The first experiment was carried out for SA-CLS-SOS, SOS, SA-SOS, and CLS-SOS to 
evaluate the makespan of the proposed algorithm. The parameter settings of the algorithms 
are shown in Table 1. The comparison results are presented in Fig. 2 and Table 2. The 
second experiment was carried out to evaluate the degree of imbalance. The results are 
presented in Fig. 3 and Table 3. The third experiment was carried out to evaluate the quality 
of the solutions of the SA-CLS-SOS algorithm based on makespan. The results are presented 
in Fig. 4 to Fig. 6. 
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Table 1. Parameter settings 

Algorithm Parameter  Value 
SOS Number of eco _ sizes 100 

Number of iterations 1000 
SA Initial temperature, T0 10 

Final temperature, Tk 0.001 
Cooling rate,  α 0.9 

CLS Control parameter, p 0.05 
Search boundaries: xmax 
                xmin 

1.2 
0.2 

 
 
In order to compare the performance of the proposed SA-CLS-SOS against SOS, SA-SOS, 

and CLS-SOS, graphs for solution quality, makespan, and response time were plotted against 
the number of iterations for task sizes from 100 to 1000. Fig. 2 show the average makespan 
when executing a task instance 10 times using SOS, SA-SOS, CLS-SOS, and SA-CLS-SOS. 

 
 

 
Fig. 2. Makespan comparison between SOS, SA-SOS, CLS-SOS, and SA-CLS-SOS 
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The figure indicates minimization of makespan when using SA-CLS-SOS, particularly 
from task instances of 300 upward. For makespan, the percentage improvement with 
SA-CLS-SOS over SA-SOS is summarized in Table 2, showing that the degree of 
performance of SA-CLS-SOS over SA-SOS increases as the search space increases. 
 

Table 2. Makespan comparison between SA-SOS and SA-CLS-SOS 
Number of 

Tasks 
SA-SOS SA-CLS-SOS Improvement 

(%) Average Worst Best Average Worst Best 
100 312.21 438.57 215.73 278.02 297.00 196.12 10.95 
200 807.07 1115.35 507.72 734.91 817.32 522.65 8.94 
300 1470.53 1904.61 859.45 1375.71 1484.38 1035.98 6.45 
400 2334.28 3309.66 1654.35 1976.99 2168.68 1423.27 15.31 
500 3263.91 4396.75 2244.82 2926.87 3099.04 2092.69 10.33 
600 4201.65 5391.53 3094.80 3698.41 3847.80 2893.99 11.98 
700 5023.15 6118.88 3561.55 4679.92 4956.90 3744.04 6.83 
800 6157.11 8487.05 4369.69 5430.88 5800.05 3501.86 11.79 
900 7106.45 8446.11 4874.59 6494.58 6825.56 5381.45 8.61 

1000 8095.45 9880.74 6171.13 7641.47 7942.74 6680.93 5.61 
 
 
SA-CLS-SOS also gives a better degree of imbalance among VMs for large problem 

instances, as can be observed in Fig. 3. 
 

 
Fig. 3. Degree of imbalance 
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For the degrees of imbalance, a statistical analysis of SA-SOS and SA-CLS-SOS under 
different task sizes is presented in Table 3. As a result, SA-CLS-SOS produced a better 
degree of imbalance among VMs, compared to SA-SOS for all task sizes. 

 
Table 3. Comparison of degree of imbalance obtained by SA-SOS and SA-CLS-SOS 

Number of 
Tasks 

SA-SOS SA-CLS-SOS Improvement 
(%) Average Worst Best Average Worst Best 

100 10.94 17.58 10.71 8.47 20.08 11.04 22.61 
200 22 43.28 22.71 14.81 41.38 21.59 32.67 
300 38.45 66.91 41.26 28.7 62.57 40.68 25.37 
400 50.24 86.57 53.19 31.19 86.84 52.58 37.91 
500 67.13 103.88 73.45 54.62 112.19 77.6 18.64 
600 76.1 120.36 80.93 53.28 121.42 80.47 29.99 
700 103.03 148.15 108.92 66.26 150.92 104.74 35.69 
800 111.35 167.11 121.6 70.69 174.31 101.93 36.51 
900 133.56 191.2 139.55 98.65 181.62 143.7 26.14 
1000 139.3 196.2 149.77 120.5 218.16 163.06 13.49 

 
Convergence graphs showing improvement in the quality of solutions for makespan 

obtained by SA-SOS and SA-CLS-SOS using data instances of 100, 500, and 1000 are 
presented in Fig. 4 to Fig. 6.  

 

 
Fig. 4. Convergence graph (100 tasks) 
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Fig. 5. Convergence graph (500 tasks) 

 
Fig. 6. Convergence graph (1000 tasks) 
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As can be seen, both methods showed improvement in the quality of solutions at the 
beginning of the search, but SA-CLS-SOS demonstrated the ability to improve the quality of 
solutions at a later stage of the search process. The quality of solutions obtained by 
SA-CLS-SOS is better than with SA-SOS, especially when the problem size is large. As can 
be seen from the figures, SA-CLS-SOS obtains the lowest makespan, and the quality of the 
solutions obtained by the SA-CLS-SOS algorithm is better than SOS, SA-SOS, and 
CLS-SOS. That is, the search direction of SA-CLS-SOS tends to converge to a stable point 
in fewer iterations. The method is able to improve quality even at a later stage of the search 
process, which means that SA-CLS-SOS has a higher probability of obtaining a near-optimal 
solution than SA-SOS. 

6. Conclusion 

This paper presents a novel SA-CLS-SOS algorithm to decrease makespan and improve 
the quality of solutions for task scheduling optimization problems in cloud computing. The 
proposed algorithm employs simulated annealing and a chaotic local search ability in order 
to improve the speed of convergence and the quality of solutions obtained by the SOS 
algorithm in terms of makespan. According to the simulation results, SA-CLS-SOS performs 
better than SOS, SA-SOS, and CLS-SOS in terms of the quality of the solutions obtained and 
makespan. The proposed method can be used to solve other optimization issues in cloud 
computing systems and other discrete optimization problems in different domains. 
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