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Nonlinear Blind Equalizer Using Hybrid Genetic
Algorithm and RBF Networks

Han, Soowhan*, Han, Changwookﬁ

ABSTRACT

A nonlinear channel blind equalizer by using a hybrid genetic algorithm, which merges a genetic algo-
rithm with simulated annealing, and a RBF network is presented. In this study, a hybrid genetic algorithm
is used to estimate the output states of a nonlinear channel, based on the Bayesian likelihood fitness
function, instead of the channel parameters. From these estimated output states, the desired channel states
of the nonlinear channel are derived and placed at the center of a RBF equalizer to reconstruct transmitted
symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance
of the proposed method is compared with those of a conventional genetic algorithm (GA) and a simplex
GA, and the relatively high accuracy and fast convergence of the method are achieved.
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1. INTRODUCTION

In digital communication systems, data symbols
are transmitted at regular intervals. Time dis—
persion caused by non-ideal channel frequency re—
sponse characteristics, or by multipath trans-
mission, may create inter-symbol interference
(ISD), and it has become a limiting factor in many
communication environments. Furthermore, the
nonlinear IS that often arises in high speed com-
munication channels degrades the performance of
the overall communication system[1]. To overcome
the effects of nonlinear ISI and to achieve
high-speed reliable communication, nonlinear

channel equalization is necessary.
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The conventional approach to linear or nonlinear
channel equalization requires an initial training pe-
riod, with a known data sequence, to learn the
channel characteristics. In contrast to standard
equalization methods, the so—called blind (or self-
recovering) equalization methods operate without
a training sequence[2]. Because of its superiority,
the blind equalization method has gained practical
interest during the last few years. Most of the
studies carried out so far are focused on linear
channel equalization and this is required by the
simplicity of the channel[3-5].

Only a few papers have dealt with nonlinear
channel models. The blind estimation of Volterra
kernels, which characterize nonlinear channels,
was derived in[6], and a maximum likelthood (ML)
method implemented via expectation—maximization
(EM) was introduced in[7]. The Volterra approach
suffers from its enormous complexity. Furthermore
the ML approach requires some prior knowledge
of the nonlinear channel structure to estimate the
channel parameters. Recently, nonlinear structures
such as multilayer perceptrons[8] and piecewise

linear networks[9], trained to minimize some cost
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function, have been investigated for the blind non-
linear equalization. However, in those approaches,
the structure and complexity of the nonlinear
equalizer must be specified in advance. And the
support vector (SV) equalizer proposed by
Satamaria et al[10] can be a possible solution for
both-of linear and nonlinear blind channel equal-
ization at the same time, but it is still suffering
from the high computational cost of its iterative re-
weighted quadratic programming procedure.

A unique approach in nonlinear channel blind
equalization was presented by Lin et al.[l11], in
which they used the simplex GA method to esti~
mate the optimal channel output states instead of
estimating the channel parameters directly. With
this method, the complex modeling of the nonlinear
channel can be avoided, and it has turned out that
the nonlinear channel blind equalization problem
can be transformed to the problem of determining
the optimal channel output states. However, in this
method, the performance of the equalizer is highly
dependent on the searching algorithm for the opti—
mal channel output states.

Therefore, for the better performance results, a
hybrid genetic algorithm (GA merged with simu-
lated annealing (SA): GASA) is investigated to
search optimal output states of ‘a nonlinear channel
in this paper. GA[12] and SA[13], éach of which
represents a powerful optimization method, have
complementary strengths and weaknesses. To get
the synergy effect between GA and SA, many re-
searchers have considered the combination of these
twol[14,15], and those algorithms have been suc-
cessively used for the optimization problems
[16,17]. Thus the GASA can be a better solution
to find the optimal channel output states for non-
linear channel blind equalization. For our particular
application, the proposed GASA has the Bayesian
fitness function in the searching procedure. And by
using random generated initial temperature in its
selection procedure, it can reach the optimal global

solution with a relatively high speed even when it

is trapped in a local solution. Its performance is
compared with those of a conventional GA and a
simplex GA. In the experiments, the optimal output
states of a nonlinear channel are estimated by us—
ing each of three different styles of GA algorithm.
From these output states, the desired channel
states of the nonlinear channel are derived and
placed at the center of a RBF equalizer to re-
construct transmitted symbols. The RBF equalizer
is an identical structure with the optimal Bayesian
equalizer, and its important role is to place the opti-
mal centers at the desired channel states[18].
The organization of this paper is as follows:
Section 2 includes a brief introduction to the equal-
ization of nonlinear channels using RBF networks;
section 3 shows the relation between the desired
channel states and the channel output states. In
section 4, GASA with a Bayesian fitness function
is introduced. The simulation results, including
comparisons with the two other algorithms and the
conclusions, are provided in sections 5 and 6,

respectively.

2. NONLINEAR CHANNEL EQUAL-
IZATION USING RBF NETWORKS

A nonlinear channel equalization system is
shown in Fig. 1. A digital sequence s(k) is trans-
mitted through the nonlinear channel, which is
composed of a linear portion H(z) and a nonlinear

portion N(z), governed by the following ex-

pressions,
k) = éh(i)s(k—:) @
Pky = D,5(k) + D,y(k)’ + D,y (k) + D,y(k)* (2)

where p is the channel order and D; is the co-
efficient of the i nonlinear term. The transmitted
symbol sequence s(k) is assumed to be an equi—

probable and independent binary sequence taking

values from {il}, and the channel output is cor-

rupted by an additive white Gaussian noise e(k).
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Fig. 1. The structure of a nonlinear channel equalization system.

Thus the channel observation y(k) can be written

as

(k) = (k) + e(k) 3

If g denotes the equalizer order (number of tap de-

lay elements in the equalizer), then there exist

M =271 different input sequences

s(k) = [s(k), sk = 1)+, 5(k — p~q)] @

that may be received (where each component is ei-
ther 1 or -1). For a specific channel order and
equalizer order, the number of input patterns that
influence the equalizer is M, and the input vector

of equalizer without noise is
PRy =[Ph), 3k = 1)+, 5(k - )] (5)

The noise-free observation vector J(k) is referred
to as the desired channel states, and can be parti-
. . y* y .
tioned into two sets, '¢¢ and “¢4, as shown in
equations (6) and (7), depending on the value of

s(k-d), where d is the desired time delay.
Y, (5 stk—d) = +1) )

Yoi=( 3k |stk-d)=—1) -

The task of the equalizer is to recover the trans-
mitted symbols s(k-d) based on the observation
vector y(k). Because of the additive white
Gaussian noise, the observation vector y(k) is a

random process having conditional Gaussian den—
sity functions centered at each of the desired chan-
nel states, and determining the value of s(k-d) be~
comes a decision problem. Therefore, Bayes deci-
sion theory[19] can be applied to derive the optimal
solution for the equalizer, and this optimal

Bayesian equalizer solution is given by equations

(8) and (9).

f2(k)= ;ew(-um-w

202)
D R e (®)

+1, fe(y(k))=0
S(k—d)=sgn(fa(y(k)) = |1 fr(rk)<0 (9)

+1 -1
where Yi and Y: are the desired channel states

. + -1 . .
belonging to Y4 and Yq.d, respectively, and their
+1 —1 2

numbers are denoted as % and % , and ©e

is the noise variance. The desired channel states,

+1 -
Yi and Ji l, are derived by using their relationship

with the channel output states, which will be ex-
plained in the next section. In this study, the opti-
mal Bayesian decision probability shown in equa-
tion (8) is implemented by using a RBF network.
The structure of a RBF network is shown in Fig.
2, and its output is given by equation (10)[11,20].
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Fig. 2. The structure of.a RBF network.
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f(x)=) 0pC—)
Zl o (10

where # is the number of hidden units, ¢ are the
RBF centers, # is the width of the i unit and
@; is its weight. The RBF network is an ideal
processing means to implement_ t_he.‘ optimal
Bayesian equalizer when the nonlinear function ¢

is chosen as the exponential function plx)y=e"

and all of the widths have the same value £, which

is twice as large as the noise variance °'e2 . For the
case of equiprobable symbols, the RBF network
can be simplified by setting half of the weights to
1 and the other half to -1. Thus the output of this
RBF equalizer is same as the optimal Bayesian de-

cision probability in equation (8), and its perform—
ance highly depends on whether the desired chan-

+1 -1
nel states, ¥i and Vi , can be correctly positioned
at its centers [11,18].

3. DESIRED CHANNEL STATES AND
CHANNEL OQUTPUT STATES

R +1 -1
The desired channel states, Y& and Yi | are
used as the-centers-of the hidden units in the RBF
equalizer to reconstruct the transmitted symbols.

If the channel order p=1 with H(5)=0-5+1-0~'_1,
the equalizer order g=1, the time delay d=1, and the
nonlinear portion 21 =10, =0.1,D,=0.05,D, = 0.0 j5
Fig. 1, then the eight different channel states (2”*""' =8)
may be observed at the receiver in the noise- free
case, and the output of the equalizer should be Sk =1,
as shown in Table 1. From Table 1, it can be seen
that the desired channel states [P(6).5((-1] can be
constructed from the elements of the dataset, called

“channel output states”, {@-4.4.4.}  where

a, =1.89375,a, = —0.48125, a, = 0.53125 and
a, =-1.44375 for this channel. The length of data-
set, n , is determined by the channel order, p, such

as =g In general, if g=1 and d=1, the desired

Table. 1.-The relation between desired channel states and channel output states

Nonlinear channel with H(z)=05+1.0z" D, =1D,=0.1,D,=005D,=00 anq g=1
Transmitted symbols Desired channel states Qutput of equalizer
(8 s(k 1) sk -2) W k-1 By chapne’ output, states, sk-1)
1 1 1 1.89375 1.89375 (a,,a;) 1
| 1 -1 1.89375 -0.48125 (ar,a3) 1
-1 1 1 0.53125 1.89375 (a;,ay) 1
-1 1 -1 0.53125 -0.48125 (as,a,) 1
| 1 —0.48125 0.53125 (a,,ay) ~1
1 -1 -1 ~0.48125 —1.44375 (ay,a4) -1
-1 -1 1 -1.44375 0.53125 (as.a3) -1
-1 -1 -1 -1.44375 -1.44375 (as.a4) -1
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+1 —
channel states for Y and Y are (anan), (anaz),
(as,a1), (as,a2), and (aza3), (ar,a1), (as,a3), (aa),
respectively. In the case of d=0, the channel states,

+1
(anan), lana2), (azas), (azas), belong to Y, and

(asa1), (as,a2), (asas), (@sa:) belong to ¥ii . This re-
lation is valid for the channel that has a one-to—one
mapping between the channel inputs and out-
puts[11]. Thus the desired channel states can be
derived from the channel output states if we as—
sume p is known, and the main problem of blind
equalization can be changed to focus on finding the
optimal channel output states from the received
patterns.

4. GASA WITH BAYESIAN FITNESS
FUNCTION

It is known that the Bayesian likelihood (BL),
defined in equation (11), is maximized with the
channel states derived from the optimal channel
output states[18,21].

BL =T [max(f;' (k). £5' (k) (an

":] +1 2
where fEl(k):;e)(p (—”y(k)—y,» /200y, 5 (k)=

,Z:,“eXp(_“y(k)'yi_l\r/z‘fz) and L is the length of
received sequences. Therefore, the BL is utilized
as the fitness function (FF) of the proposed algo-
rithm to find the optimal channel output states after

taking the logarithm, which is shown in equation
(12).

FF = Y logmax (£ (k). f5 (k) a2

The optimal channel output states, which max-—
imize the fitness function FF, cannot be obtained
with the conventional gradient methods, because
the mathematical formulation between the channel

output states and FF cannot be accomplished

without knowing the channel structure{11]. Thus,
genetic algorithm (GA) and simulated annealing
(SA), each of which has shown successful per-
formance in complex high dimensional optimal
problems, are considered in order to find the opti-
mal solution of equation (12).

A powerful optimization algorithm, GA, is a
search algorithm based on an analogy with the
process of natural selection and evolutionary
genetics. It combines the survival of the fittest
among string structures with a structured, yet
randomized, information exchange to form a search
algorithm with some of the innovative flair of a hu-
man search. It is guided largely by the machi-
nations of three operators: selection, crossover, and
mutation. In every generation, a new set of artifi-
cial creatures is created using bits and pieces of
the old; an occasional new part is tried for good
measure. More details of the conventional GA al-
gorithm can be found in [12].

Another powerful optimization algorithm is SA
and its basic idea comes from the physical anneal-
ing process done on metals and other substances.
In metallurgical annealing, a metal body is heated
to near its melting point and then slowly cooled
back down to room temperature. This process will
cause the global energy function of the metal to
eventually reach an absolute minimum value. Thus
SA allows a system to change its state to a higher
energy state occasionally so that it has a chance
to jump out of local minima and seek the global
minimum. Its mathematical representation and de-
tail optimization mechanism are given in [13].

Both of GA and SA have complementary
strengths and weaknesses. While GA explores the
search space by means of the population of search
points, it suffers from poor convergence properties.
SA, by contrast, has good convergence properties,
but it cannot explore the search space by means
of population. Many researchers have considered
the combination of these two, and those algorithms
have been successively used for the optimization
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problems{14-171.

Therefore, in our approach, the hybrid genetic
algorithm, which combines the recombinative
power of GA with the local selection of SA, is in-
vestigated to find the optimal solution of equation
(12) for nonlinear channel blind equalization. The
flowchart of the proposed GASA algorithm is de~
scribed in Fig. 3. For our particular application, the
Bayesian likelihood shown in equation (12) is uti-
lized as the fitness function in the proposed GASA.
And the typical selection of SA is reversed to have
its fitness function maximized, which means uphill
moves are always accepted, whereas downhill
moves are accepted depending on the acceptance
probability. For example, the function “SA-se-
lection (new, old, T)" calculates the acceptance
probability “P=exp(-(old-new)/T)". If “new>old",
a “new” solution is selected, which means that an
uphill move is always accepted. And also, if “new <
old” and “P>random number in [0, 1]", a “new”
solution will be selected, which means that a
downhill move is occasionally accepted, depending
on P. An “old” solution will be selected for all other

Initialize GA population at random

Generate the initial temperatures T{i)
for each individual at random

Calculate the fitness function shown
in eg. (12) for the initial population

¥
Save the current population as parents
¥
Increase Generate the offsprings through
generation no. crossover and mutation
¥

Find the best-fit individual among

the perents and offsprings
and then update the best solution

jon(SA ion(offspringfi), paremt[i], Tli]), best solution, T[i])
K3

[ Update the i-th individual and its fimess |

TLi}=T1i) x cocling rate

Fig. 3. Flowchart of the proposed GASA.

cases. This selection of SA allows a downhill move
(same as an uphill move in a typical SA which
minimizes the fitness function) to explore the
search space at higher temperatures, and to exploit
the search space acceptance of the best solution’s
individual at lower temperatures. Moreover, the
population stores a diversity of annealing sched-
ules by using random generated initial temperature
for each individual in the population, i.e., some in-
dividuals explore the search space with high initial
temperature and at the same time some individuals
exploit the search space with low initial
temperature. Thus the proposed GASA can search
the channel output states which maximize the
Bayesian likelihood, and it can reach the optimal
global solution with a relatively high speed even
when it is trapped in a local solution. Its perform-
ance is compared with those of a conventional ge~
netic algorithm (GA) and a simplex GA introduced
in [11].

5. SIMULATION RESULTS AND
PERFORMANCE ASSESSMENTS

The blind equalizations with GA, simplex GA,
and GASA are taken into account to show the ef~
fectiveness of the proposed hybrid algorithm. Two
nonlinear channels in [11] and [22] are evaluated
in the simulations. Channel 1 is shown in Table
1, and channel 2 is as follows.

H(z)=0.3482+0.8704z"' +0.3482z"
D =1,D0,=02,D0,=0.0,D,=0.0 znq 4=1

In channel 2, the channel order p, the equalizer or-
der g, and the time delay d are 2, 1, 1, respectively.

Thus the output of the equalizer should be S(k - I),

and the sixteen desired channel states (27*7" =16)

and the eight channel output states

(2“l =8, 4,,a,,a3,,%) may be observed at the

receiver in the noise—free case. Those are shown
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in Table 2. The coefficients of channel 2 are sym-
metric, which means this channel has a linear
phase characteristic. In this case, the number of
observed channel output states becomes six in-
stead of eight because a2 and as, and as and a7 al-
ways have same values, 1.0219 and -0.7189 for this
channel, respectively. However, in our simulations,
channel output states,

each of all eight

a,,a,,85,"** .85 gre searched and evaluated for

more general cases.

The parameters of the optimization environ-—
ments for each of the algorithms are included in
Table 3, and these are fixed for all experiments.
The choice of these.specific parameter values is
not critical in the performance of the proposed
GASA. It is shown that the same quantities of pop-

ulation size, crossover rate, and mutation rate are

used for the performance comparisons.

In the experiments, 10 independent simulations
for each of two channels with five different noise
levels (SNR=5, 10, 15, 20 and 25db) are performed
with 1000 randomly generated transmitted sym-
bols, and the results are averaged. The three algo-
rithms, GA, simplex GA and proposed GASA, have
been implemented in a batch way in order to obtain
an accurate comparison among them. The compu-
tational efforts (the number of fitness function
evaluations required for each generation) in GA
and GASA are the same, while that in the simplex
GA is greater by as much as € because of its con-
current version of the simplex operator. It means
that, if the maximum number of generations is 100,
and Q=4 as in our simulations, 400(100x 4 ) addi-

tional evaluations of the fitness function are re-

Table 2. The desired channel states and channel output states in channel 2

Nonlinear channel with

H(z)=0.3482+0.8704z7' +0.3482z2 D, =1,0,=02,D,=0.0,0,=0.0 ,nq g=1

Transmitted symbols Desired channel states Qutput of equalizer

s(k) s(k =1) s(k —2) s(k —3) O () a?yafhzzmi :’;S‘E";‘é S;":"f,s §k-1)
1 1 1 1 2.0578 2.0578 (a,ay) 1
1 1 1 -1 2.0578 1.0219 (a,,a5) 1
1 1 -1 i 1.0219  -0.1679 (ay.a;) 1
1 1 -1 -1 1.0219  -0.7189 (az.a,) 1
-1 1 1 1 1.0219 2.0578 (as,a) 1

-1 1 1 -1 1.0219 1.0219 (as,a;) 1
-1 1 -1 1 0.1801 -0.1679 (ag,a3) 1
-1 1 -1 -1 0.1801 -0.7189 (ag,a,) 1
1 -1 1 1 -0.1679 1.0219 (az,as) -1
1 -1 1 -1 -0.1679 0.1801 (as,aq) -1
1 -1 -1 1 -0.7189 -0.7189 (a4,a;) -1
1 | -1 -0.7189 -1.0758 (ay,a5) -1
-1 -1 1 1 -0.7189 1.0219 (a,,as) -1
-1 -1 1 -1 -0.7189 0.1801 (ay,a5) -1
-1 -1 -1 1 -1.0758 -0.7189 (as,a;) -1
o S S B | -1.0758 -1.0758 (ag,ag) -1
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Table 3. Parameters of the optimization environments. { () for channel 2)

Population size 50(100)
Maximum number of generation 100
GA
Crossover rate 0.8
Mutation rate 0.1
Population size 50(100)
Maximum number of generation 100
. Crossover rate 0.8
Simplex GA Mutation rate 0.1
Elitist number N 4
Q in the concurrent simplex method 4
Population size 50(100)
Maximum number of generation 100
Crossover rate 0.8
GASA Mutation rate 0.1
Random initial temperature [0, 1]
Cooling rate 0.99
quired for the simplex GA. The averaged fitness A

functions in successive generations with 25db are
shown in Fig. 4 for each of the two channels. It
is observed that the proposed GASA converges
with the highest speed because of its diversity of
annealing schedules as mentioned in the previous
section. Fig. 5 shows the averaged convergence
speed (generation no.) for the fitness functions
driven by the simplex GA and by the proposed
GASA to reach within 10% difference with the op-
timal fitness function (conventional GA does not
reach within 100 generations). We also measure
the normalized root mean squared errors (NRMSE)
for the estimation of channel output states, defined

by equation (13), and they are shown in Fig. 6.

——GASA
----Simplex GA

--—==Optim al value

Fitness function

{a) for channat |

T ¥ T
] 1] B0
Generation no.

Fig. 4.

Fitness function

Generation no.

Fig

100 4

Simplex GA

Channel (25db)

. b. Averaged generation no. to reach within

10% difference with optimal

function.

fitness

——GASA
----Simplex GA

--——-Optim al value

£h) for channel 2

T T
40 60
Generation no.

Averaged fitness functions in successive 100 generations: (a) channel 1, (b)

1
100

channel 2.
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2

1 1 & .
;‘Z::l[[a—a,.

NRMSE= |ja (13)

where a is the dataset of optimal channel output

states, % is the dataset of estimated channel out-
put states, and m is the number of simulations per-
formed (m=10). The GASA presents the lowest
NRMSE over all of the SNR ranges, and it means
that the proposed hybrid genetic algorithm is a
very effective way to find optimal output states for
nonlinear channel blind equalization. A sample of
1000 received symbols under 5db SNR for channel
2 and their desired channel states constructed from
the estimated channel output states by GASA is
shown in Fig. 7. Finally, the bit error rates (BER)
are checked and summarized in Table 4. It is

shown that the BER, with the estimated channel
output states by GASA, is almost same as the one
with the optimal output states for both of channel
1 and 2.

6. CONCLUSIONS

A hybrid genetic algorithm merged with SA
(GASA) is investigated to find the optimal channel
blind

equalization. In this approach, the complex model-

output states for nonlinear channel
ing of an unknown nonlinear channel becomes un-
necessary by constructing the desired channel
states directly from the estimated channel output
states. It has been shown that the proposed GASA
with the Bayesian likelihood as the fitness function

offers better performance than conventional GA

—e—GASA —s—GASA
- - Simplex GA - ®- Simplex GA
ok GA A GA
— m
B p
= [i4
[°4 2
= a- A B ~ - A
2 = -l
2 o .l
S I ~ .
4 I R \' Salva
————— 1.8 ]
{a} for channel 1 b for chumael 2
22 T T r 28 T T T T
5 1 15 0 25 5 10 15 kL] 25
SNR SNR
Fig. 6. NRMSE: (a) channel 1, (b) channel 2.
s receivet symbels under 5¢b SNR optimal(s quare(+1).tri angle(- 1) & by GASAKX)
3 T r T
2k 2 a8 = 4
1 1 Dx xA =] = -
x x
o ¢ 2 o & &
X % « 8
noa* *f
RS 1 B B -
-2k -2k 4
3 . 3 L . L L s
3 3 1 ) Y Y 3 2 A 0 1 2 3
¥k} k)

Fig. 7. A sample of received symbols for channel 2 and their desired channel states by GASA.
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Table 4. Averaged BER(no. of errors/no. of transmitted symbols) for channels 1 and 2

Estimation . .
N with optimal GASA Simplex GA GA
5db 0.0797 0.0815 0.0824 0.0816
10db 00121 0.0120 0.0128 00136
15db 0 0 0 0.0003
Channel 1 20db 0 0 0 0
25db 0 0 0 0
5db 0.0970 0.1070 0.1162 0.1210
10db 0.0420 0.0460 0.0492 0.0502
15db 0.0100 0.0112 0.0114 0.0112
Channel 2 20db 0.0008 0.0008 0.0008 0.0008
25dh 0 0 0 0

and simplex GA. It successively estimates the
channel output states with relatively high speed
and accuracy. Thus a RBF equalizer, based on
GASA, can be a possible solution for nonlinear
blind channel equalization problems. For further
research and real-time use, the searching speed of
the proposed GASA under more complex opti-
mization environments, such as those with high di-
mensional channels and equalizer orders should be
studied and evaluated.

7. REFERENCES

[1] E. Biglieri, A. Gersho, R. D. Gitlin, and T.L.
Lim, “Adaptive cancellation of nonlinear in-
tersymbol interference for voiceband data
transmission,” IEEE J. Selected Areas
Commun. SAC-2(5), pp. 765-777, 1984.

[21] G. Proakis, Digital
Fourth Edition, McGraw-Hill, New York,
2001.

[3] X. R. Cao and J. Zhu, “Blind equalization with
a linear feedforward neural network,” Proc 57
European Symp. On Artificial
Networks, ESANN'97, Bruges, Belgium, pp.
267-272, 1997.

[4] E. Serpedin and G. B. Giannakis, “Blind chan-
nel identification and equalization with modu-

Communications,

Neural

(6]

[8]

(91

[10]

IEEE
Trans. Siganl Processing, Vol. 46, pp. 1930~
1944, 1998.

Y. Fang, W. S. Chow, and K. T. Ng, “Linear
neural network based blind equalization,”
Siganl Processing, Vol. 76, pp. 37-42, 1999.
T. Stathaki and A. Scohyers, “A constrained

lation—-induced  cyclostationarity,”

optimization approach to the blind estimation
of Volterra kernels,” Proc. of the IEEE
International Conf on ASSP. Vol. 3, pp.
2373-2376, Munich, Germany, 1997.

G. K. Kaleh and R. Vallet, “Joint parameter
estimation and symbol detection for linear or
nonlinear unknown channels,” IEEE Trans.
Commun. Vol. 42, pp. 2406-2413, 1994.

D. Erdogmus, D. Rende, ]J.C. Principe, and
T.F. Wong, “Nonlinear channel equalization
using multilayer perceptrons with information
theoretic criterion,” Proc. Of IEEE workshop
Neural Networks and Signal Processing,
MA, US.A,, pp. 443-451, 2001.

X. Liu and T. Adaly, “Canonical piecewise
linear network for nonlinear filtering and its
application to blind equalization,” Signal
Process., Vol. 61, No.2, pp. 145-155, 1997.
1. Santamaria, C. Pantaleon, L. Vielva, and ].
“Blind Equalization of Constant
Using Support Vector

Ibanez,

Modulus Signals



Nonlinear Blind Equalizer Using Hybrid Genetic Algorithm and RBF Networks 1699

Machines,” IEEE Trans. Signal Processing,
Vol. 52, No. 6, pp. 1773-1782, 2004.

[11] H. Lin and K. Yamashita, “Hybrid simplex
genetic algorithm for blind equalization using
RBF networks,” Mathematics and Computers
in Simulation, Vol. 59, pp. 293-304, 2002.

[12] D. E. Goldberg, Genetic algorithms in search,
optimization and machine learning, Addison-
Wesley, Reading, MA, 1989.

[13] F. Romeo and A. Sangiovanni-Vincentelli, “A
theoretical framework for simulated anneal-
ing,” Algorithmica, Vol. 6, pp. 302-345, 1991.

[14] A. H. Mantawy, Y. L. Abdel-Magid, and S.
Z. Selim, “Integrating genetic algorithms, tabu
search, and simulated annealing for the unit
commitment problem,” IEEE Trans. Power
Systems, Vol. 14, No. 3, pp. 829-836, Aug.
1999.

[15] B. Li and W. Jiang, “A novel stochastic opti—
mization algorithm,” IEEE Trans. SMC-B,
Vol. 30, No. 1, pp. 193-198, Feb. 2000.

[16] K. P. Wong and Y. W. Wong, “Combined ge-
netic algorithm/simulated annealing/fuzzy set
approach to short-term generation scheduling
with take-or-pay fuel contract,” IEEE Trans.
Power Systems, Vol. 11, No. 1, pp. 128-136,
1996.

(171 V. Savchenko and L. Schmitt, “Reconstructing
occlusal surfaces of teeth using a genetic al-
gorithm with simulated annealing type se-
lection,” Proceedings of the sixth ACM sym-
posium on Solid modeling and applications,
Michigan, U.S.A., pp. 39-46, 2001.

[18] S. Chen, B. Mulgrew, and P. M. Grant, “A
Clustering Technique for Digital Communi-
cations Channel Equalization Using Radial
Basis Function Networks,” IEEE Trans.
Neural Networks, Vol. 4, pp. 570-579, 1993.

[193 R. O. Duda and P. E. Hart, Pattern
Classification and Scene Analysis, NewYork,
Wiley, 1973.

[20] J. Lee, C. Beach, and N. Tepedelenlioglu,

“Channel Equalization using Radial Basis
Function Network,” ICASSP, Vol. 3, pp.
1719-1722, Atlanta, Georgia, U.S.A., 1996.

[21] H. Lin and K. Yamashita, “Blind equalization
using parallel Bayesian decision feedback
equalizer,” Mathematics and Computers in
Simulation, Vol. 56, pp. 247-257, 2001.

(22] S. K. Patra and B. Mulgrew, “Fuzzy techni-
ques for adaptive nonlinear equalization,”
Signal Process, Vol. 80, pp. 985-1000, 2000.

Han, Soowhan

1986. 2 Electronics,
University (B.S.)

1990. 3 Electrical & Computer
Eng., Florida Institute of
Technology (M.S.)

1993. 6 Electrical & Computer
Eng., Florida Institute of
Technology (Ph.D.)

1994. 3~1997. 2 Assistant prof., Dept. of Computer
Eng., Kwandong University

1997. 3~present Associate prof., Dept. of Multimedia
Eng., Dongeui University

2003. 3~2004. 2 Visiting  prof,,

Alberta, Canada

Research interests: Digital Signal & Image Processing,

Pattern Recognition, Fuzzy Logic

& Neural Networks

Yonsei

University  of

Han, Changwook

199 Dept. of Electronics, Young -
nam Univ.(B.S.)

1956 Dept. of Electronics, Young-
nam Univ.(M.S.)

2002 Dept. of Electronics, Young-
nam Univ.(Ph.D.)

2002~2003 : University of
Alberta, Post-Doc.

2004~present : Research Prof., in School of
Electrical Eng. and Computer Science, Youngnam

Univ.
Research interest : Fuzzy theory, Neural Networks,
Genetic  algorithm,  Granular
computing



