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Abstract

Evolutionary algorithms(EAs) have been successfully applied to many combinatorial optimization problems of various engineering
fields. Recently, some comparative studies of EAs with other stochastic search algorithms have, however, shown that they are
similar to, or even are nol comparable to other heuristic search. In this paper, a new hybrid evolutionary algorithm utilizing a
new local heurisiic search, for combinatorial optimization problems, is presented. The vew intelligent local heuristic search is
described, and the behavior of the hybrid search algorithm is investigaled on two well-known problems: traveling salesman
problems (TSPs), and quadratic assignment problems(QAPs). The rcsults indjcate that the proposed hybrid is able to produce
solutions of high quality compared with some of evolutionary algorithms and simulated annealing.
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| . Introduction

As have been attracting much attention as a new class
of global optimization techniques since they have shown
good performance in many combinatorial optimization
problems(1]. Even though literatures have offered many
applications showing the effectiveness of EAs, recent
empirical and theoretical researches have raised questions
about the effectiveness of evolutionary algorithms[2,3.4].
Moreover, several empirical evidences on real-world
applications have revealed no explicit superiority or even
inferiority of EAs to other stochastic search techniques
such as simulated annealing(SA).

Much of comparative research has suggested some
reasons of the relative weakness of the evolutionary search
over other stochastic search methods[3,5]. It has been, in
common, reported that, the weakness of EAs are :

(a) they make “‘premature" decisions of promising
regions of the search space due to the competition among
individuals of the finite population. Individuals compete
each other without exploring local search regions through
sufficient variation of each individual. Competitive
selection under the premature evaluation of local regions
often misleads to a poor local region in the case of small
population size and/or highly multimodal landscapes.

(b) EAs do not have an explicit mechanism of
escaping from local optima after all individuals become
similar. Even though, when the mutation rate is not
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individuals on uphill paths can be generated, it is
extremely rare that the new  ones  survive  the
subsequent competition and thus provide a chance of
finding individuals in better local basins.

Consequently, attempts have been made to solve these
problems and to enhance the performance of the
evolutionary search by combining or hybridizing it with
other local search algorithms, like hill-climbing and
simulated amnealing. The general idea behind hybrid
evolutionary  algorithms(HEAs) is to combine the
advantages of evolutionary search that globally identifies
promising regions with local search capable of quickly
finding good solutions in a local region. Several cascade
hybrids of evolutionary algorithm and sinmulated annealing
have been proposed[6,7,8]. In the hybrids, for each
generation, genetic operations are followed by a
full-schedule of low-temperature simulated annealing as a
local search. However, choosing an appropriate initial
temperature of simulated annealing is difficult. Instead of
stochastic local search, exact local neighborhood search
or local hill-climbing can be incorporated into the
evolutionary search[9]. Some of the hybrid evolutionary
algorithms  are  similar to so-called memetic
algorithms(MAs)[10]. By applying local search after each
of the genetic operators, MAs can search in the space of
locally optimal solutions rather than the entire search
space of all candidate solutions. However, the exact or
near-exact local neighborhood search spends much of
compuiation time to search for the locally best solution
around the local region.

In this paper, a new hybrid that incorporates an
intelligent local heuristic search into the evolutionary
search, for combinatorial optimization problems, is
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presented. The mnew local heuristic search is a
probabilistic greedy search, and its control parameters of
the greediness are chosen in consideration of the
landscape characteristic of the local region. It has a merit
of controlling the exploitation and thus may reduce time
taken to find locally optimal solutions, compared with
simulated annealing and local neighborhood search. Also,
the hybrid uses a distance-based restriction competition to
prevent the premature competition of individuals and
restart scheme for further exploration.

This paper is organized as follows. Section 2 describes,
in detail, the hybrid stochastic search: the intelligent local
heuristic gearch, the competition scheme, and the restart
method. In section 3, results of the proposed hybrid
search for two combinatorial optimization problems, i.e.,
traveling  salesman  problems(TSPs), and quadratic
assignment problems(QAPs) are described. Also, a
comparison with canonical evolutionary algorithms and
simulated annealing is made, including discussion on their
search behavior in terms of the problem size and
structure. Conclusion is made in section 4.

Il. Hybrid of Evolutionary Search and
Intelligent Local Heuristic Search

The proposed hybrid is a population-based heuristic
local search and can be regarded as a case of MAs with
an elaborate local heuristic search. The general procedure
of the hybrid is shown in Fig. 1.

begin

initialize population P;

repeat
for cach individual i belonging to P

do i = local-heuristic-gearch(i);

/1 select good individuals from P
P, = binary-competition(P);
// generate new individuals for restart
Puew = generation(Ps);
P =P 4+ Poew

until (termination=true)

end

Fig. 1. Pseudo code of the hybrid algorithm.

Initial individuals are chosen either randomly or
generated according to a particular initialization. The lo-
cal search is performed on each of individuals inde-
pendently until it reaches a local optimum. Then, indi-
viduals compete with others in the population when all
individuals have reached a certain development. Fitter
local optima, Ps survive the competition probabilistically.
Then, new individuals Pnew are generated, and their
restart states are chosen to continue searching for better
local optima in unexplored regions. The search behavior

of the hybrid is characterized by the three components:
local heuristic search, types of competition and restart
schemes.

2.1 Intelligent Local Heuristic Search

The intelligent local heuristic search(ILHS) is the most
important component of the proposed hybrid algorithm,
the procedure of which is shown in Fig. 2. To be
specific, two inputs are an initial solution $(0) and an
initial value of the control parameter, threshold T(0). A
probabilistic transition function, p(T(i),D) is used during a
predetermined number of iterations, so-called transition
epoch L, and if no jmprovement during the transition
epoch, the ILHS stops. Otherwise, it continues to perform
the probabilistic search after adjustment of the threshold
T(1). During the transition epoch, a neighbor for the next
transition is selected in a sequential order.

begin
5(0) and T(0) are given
repeat i = 1,2,3,
cosi(prev) = C(s());
repeat
// generate a neighbor
8" = N(s(i);
D = (s - C(s(i))
// minimization problem
if(rand( ) < p(T@E),D)) s@@) = s
if (escape=true) T(i) = reduce(T({));
until (transition epoch)
if(C(s(i)) = cost(prev)) stop
else s(itl) = s(i);
T@+1) = reduce(T(i));
end repeat
end

Fig. 2. Psendo code of the ILHS.

The p(T(i),D), shown in Eq. (1), decides whether or
not to accept the move associated with the cost change
D. The acceptance probability is determined by the
threshold T. When T is 0, the ILHS results in a greedy
algorithm, and on the other hand, it allows many uphill
moves for large T. It has been observed from a lot of
experiments that the ILHS with the value of T slightly
greater than 0 is more powerful than those with O or
high values. It should be noted that p(T(i),D) is slightly
different from the Metropolis criterion{11] in that moves
that would make the current solution much worse is not
accepted, whereas in the Metropolis criterion acceptance
probability of the worse solution is given by the
exponential form The choice of acceptance criterion
depends on the behavior of the cost function, which will
be discussed later.

. D
p(T(z'),D)={ min{1,1 =75 -
0, if DY T(9)



International Journal of Fuzzy Logic and Inteligent Systems, vol. 1, no. 1, June 2001

Initially, TO is set to Tmin that is a non-negative value
close to zero so that the ILHS performs greedy-like
search. After all the individuals converge to local optima
and then, their survival is determined based on their cost
values. In the next iteration, the ILHS starts from these
local optimal solutions or randomly chosen solutions.
When the ILHS begins from one of local optima found,
TO is set to Tesc that is larger than Tmin. The reduction
of Tesc is needed for the ILHS to converge, which is
executed by the reduce() function. Two modes for
threshold reduction from Tesc to Tmin are offered: a
rapid mode and slow mode. The first reduce() function is
used for the rapid mode and the second is used for both
of them. The idea of the rapid mode is that Tesc is
expected to be switched to Tmin after the ILHS gets out
of the basin of the local optimum. Heuristic decision
criteria of the time when Tesc switches to Tmin are: (1)
when a better solution than the local optimum is found
during the search with Tesc; (2) when the ILHS has little
chance to return to the same local optimum even though
Tesc is reduced to Tmin. Because of complexity, a
decision of switching is made in the course of search by
examining the degree of returning to the local optimum
based on a ratio, G of the number of down moves
accepted on the search trajectory and the transition epoch.
On the other hand, in the slow mode, the threshold is
gradually lowered like the temperature of SA, as shown
in Eq. (2).

TG+ 1) =max( T py, . ¢T(D) (2)

where ¢ is a decreasing rate between 0 and 1.

Choosing appropriate values of Tmin and Tesc is
important because Tmin determines the degree of
exploitation and a high value of Tesc may upset search
efforts so far to find the promising region. Indeed, their
optimal values rely on the given problem. Therefore, the
estimation of Tmin is made by averaging costs of uphill
tals during a set of independent greedy moves to
multiple local optima, as shown in Egs. (3)-(4),
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where §,™* is the cost change of the smallest uphill
trials generated during the j-th transition epoch, f;
represents the mumber of transition epoch to a local
optimum in the i-th run of the greedy algorithm, and M
represents the mumnber of independent runs. The heuristic
seems to be reasonable than random wandering because
information of uphill moves during the trajectory along
the paths to local optima is meaningful for the ILHS.

Tesc is used to enable the ILHS to escape from the
converged local optimum and to continue to search for
another local optimum. The value of Tesc is determined

by Eq. (5)

Tesc= Tmm * Tdnd(Bz_Bu) (5)

where rand(L,u) generates a random number between |
and u, and B, and B.(= B,+4B) represent the lower
and upper bounds of the random number, respectively,
which are chosen by trials-and-errors or some preliminary
experiments.

2.2 Restricted Competition

After all individuals converge to local optima, a binary
competition occurs between individuals based on their
cost values as well as their locations in the search space.
For each individual, the competing one is chosen
randomly without replacement and competition is made
only when the distance between them is less than the
predetermined value, so-called competition radius, Rc.
The distance can be measured either by calculating how
many transitions are required to reach another individual
or by calculating some quantities based on pro-
blem-specific  knowledge.  The  strategy  restricts
competition between two individuals that are located far
apart in the search space to avold premature exclusion of
possibly promising local regions that otherwise could be
identified in the succceding generations. In minimization
problems, the binary competition of individuals A and B
is performed according to the probability that A survives:

Cs—C min
(Cu=Cain) +(Co— C i)

Pr{A}== (6)

where ¢, and C, represent the cost values of A and
B, respectively, and (., represents the minimmm of
costs of all individuals in the current population.

2.3 Restart Schemes

This section presents how to restart to search so as to
find new local optima in the next local search phase. The
winners restart to search from the converged local optima
with a high value of T, Tesc, because their survival
implies that there may exist more promising regions near
their locations. There are several ways of choosing new
states of the losers. They can be either chosen at random,
regardless of local optima found previously, or restarted
from the local optima found by winners. The former
chooses exploration by extending the search to regions
far away from the local optima found On the other
hand, the latter adopts exploitation by concentrating the
search on identified local regions.

In the restart phase, these two methods are used to set
states of the losers: (1) the concentration(exploitation)
mode in which the loser restarts from the local optimum
that the competing winner found. In the case, the loser
has Tesc to escape from the local optimum. (2)
scattering(exploration) mode in which the loser restarts
from a new state far away from all of the previously
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found local optima to find another better local optimum
in the unexplored search region. In the scaftering mode, a
list of the local optima found is maintained to select the
restart states. To do this, a population of states are
created randomly, and then the best state among them is
chosen only if it is away from local optima in the list by
a prescribed distance.

lll. Experimental Results

Experimental results of the proposed hybrid on two
combinatorial optimization problems, traveling salesman
problems(TSP), and quadratic assignment problems(QAP)
are presented, together with comparisons with simulated
annealing and canonical evolutionary algorithms.

3.1 TSP and QAP Instances

TSPs and QAPs are well-known NP-complete problems
whose cost functions depend on the permutation of
elements. The goal of TSP is to minimize the length of a
tour starting from any city, visiting each of the N cities
once and only once, and returning to the departure city.
The TSPs in which the cities are placed in [0,1]2 and the
distances are symmetric and Euclidean were considered in
the study. Two types of city distributions, uniformly
distributed cities and cities on a lattice with perturbation
(50% of distance between neighboring cities) were used
to generate TSPs with different number of cities (N = 50,
100, 200, 300).

The QAP is a facilities location problem, the task of
which is to assign N facilities (with given flows between
them) to N or more locations (with given distances
between them) in such a way that the sum of the product
between flows and distances is minimized. QAPs with
different sizes, N = 30, 72, 81, were generated in a
manner that the distance matrices are rectilinear and two
sets of flows, high- flow and low-flow dominance, are
included.

3.2. Results and Discussions

The performance of the hybrid was evaluated compared
with those of simulated annealing and canonical
evolutionary algorithms. For fransition operators, inversion,
which reverses a part of the tour, was chosen for the TSPs
is more effective than transposition, which swaps
two randomly chosen cities[12]. Based on preliminary
results, the transposition was used for the QAPs. The
experimental conditions of the three algorithms are as
follows,

The SA described in [13] was adopted where geometric
aonealing scheme is used and initial temperature values are
determined by the degree, Pa to which uphill moves during
a certain number of random transitions are allowed, The

since it

chain length of the SA was chosen roughly according to
the mumber of neighbors ( ]2\7 ), and Pa of 0.8 and cooling

rate of 0.987 were used.

EA with g-tournament selection[1], a class of EAs, was
adopted in the experiments because of its effectiveness over
other EAs such as evolution strategies and genetic
algorithms on many optimization problems[3,5]. Several
population sizes were tested in proportion to the problem
size, e.g, from 100 to 400 in such a way that the EA
converges to a local optimum within the given number of
evaluations. Crossover or recombination operators were not
used because it seemed to offer neither substantial benefits
in convergence time mnor good performance without
incorporation of problem-specific knowledge.

The transition procedure of the hybrid for permutation
problems during the transition epoch is as follows. For
each element, another element is randomly selected and
then both elements are exchanged. The resulting new
neighbor is accepted probabilistically, as shown in Eq. (1).
It is repeated until a new neighbor is accepted or the
iteration reaches the predetermined number of times, .
Parameters of the hybrid are given by table 1, and there
values were determined by the trial-and-errors.

Table 1. Parameter values of the hybrid for TSPs and

QAPs.
Parameters TSPs QAPs
(B;,4B) (5.0, 5.0 (5.0, 5.0
G 0.1 0.3
Re 04 0.9
7 0.15 0.15
14.8 T T T T T T T
146 | /% -
14.4 / B
s 142t %/ i
§ 14 p s 4
& 138 | -
-
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T
wep CAF -
13_2 1 I 1 1 1 L L
1 2 4 8 16 32 64

Population size

Fig. 3. The performance of the hybrid for a TSP of 300
cities with respect to the number of individuals. Total
number of evaluations is 107.

All experiments of the hybrid were performed with
population size of 8 except for large-sized problems like
experiments of 200-, 300-cities TSPs and 72-,
81-facilities QAPs where 4 individuals are used. It is a
question that, given a fixed number of evaluations, which
one is a better strategy, a large number of individuals
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each performing the Jocal search for a small number of
generations or a small number of individuals for a large
mumber of generations. As shown in Fig. 3, It was
observed in the hybrid that, the smaller the number of
individuals is (the longer each local search performs),
the better performance the hybrid gives. Similar results
were obtained for the QAPs.

As shown in table 2, the hybrid provides a significant
improvement over the EA regardless of the types of TSP
instances. Both of the hybrids with the rapid and slow
modes gave better results than the SA for TSPs of
perturbated lattice-type cities, regardless of problem size,
but only the hybrid with the slow mode outperforms the
SA for TSPs of uniformly distributed cities. Comparing
the results for the uniform and the lattice TSPs, the
lattice TSPs seem to be more amenable to the hybrid
compared with the SA than uniform TSPs. It is
conjectured that the phenomenon is due to different
characteristics of heights of wuphill barriers on the
landscape, which is determined by locations of cities in
the case of the Euclidean TSPs. For QAPs, the SA is
apparently superior to the EA consistently irrespective of
problem size and structure, as in TSPs. The hybrids also
outperform the EA for two types of QAPs. The hybrid
with the slow mode is slightly better than one with the
rapid mode regardless of the QAP type, and the
performance difference becomes larger as the problem
size increases. However, the hybrids produce slightly
poor solutions than those of the SA, unlike in TSP.
These results suggest that the performances of the hybrid
and the SA are apparently different depending on the
given problem structure.

Table 2. The experimental results of SA, EA, and the
hybrid for two types of TSPs. The values in ( ) indicate the
standard deviation of tour lengths.

Lattice Size
type 50 100 200 300
SA 5.244 (0.031) | 8.208 (0.062) [11.134 (0.064)|14.049 (0.075)
EA 5.275 (0.065) | 8.258 (0.084) |11.509 (0.108) | 14.510 (0.151)
Hybrid T | 5.235 (0.012) | 8.184 (0.042) | 11.069 (0.082)|13.989 (0.064)
Hybrid 1T | 5.242 (0.035) | 8.230 (0.037) | 11.080 (0.078)|13.966 (0.095)
Uniform Size
type 50 100 200 300
SA 5.887 (0.027) | 8.020 (0.042) | 11.168 (0.097)|13.518 (0.094)
EA 5.907 (0.066) | 8.098 (0.078) | 11.366 (0.119)|13.930 (0.167)
Hybrid [ | 5.845 (0.001) | 8.014 (0.058) {11.207 (0.094)|13.660 (0.155)
Hybrid IT | 5.851 (0.079) | 8.001 (0.046) | 11.167 (0.094)|13.468 (0.110)

In this sense, TSPs seem to be a problem belonging to
a class of combinatorial optimization problems that can
be successfully attacked with the hybrid. To be specific,
many edges between cities in the tour are commonly

10

Table 3. The experimental results of SA, EA, and the
hybrid for two types of QAPs.

Dense Size
type 30 72 81
SA 20050 (26) | 252521 (151) | 342080 (143)
EA 20111 (88) 253814 (333) 343790 (636)
Fybrid T 20023 (50) 232700 (240) 342678 (340)
Hybrig 11 29010 (23) | 232670 (125) | 342370 (270)
Sparse Size
ype 30 72 81
SA 9123 (58) 111823 (223) | 154598 (195)
EA 9177 (71) 113286 (557) 156593 (692)
Hybrid ] 0066 (47) 112025 (238) 154835 (197)
Hybrid TI 9112 (34) 112012 (87) | 154783 (169)

local optima are located closely each other on the search
space, which can be  explained by Fig. 4(a). The
property of TSPs is supported by the comparison
experirments between the concentration and the scattering
modes of the ILHS. The poor performance of the
scattering mode is likely to be caused by less
concentration on looking for new local optima around the
promising region previously found. On the other hand,
QAPs do not seem 1o have such a property of the
distribution of local optima in the search space. Unlike
TSPs, distances between local optima, as shown in Fig.
4(b), do not have a certain correlation of local optima.
Because there is no relationship between local optima in
QADPs, it may be difficult for the evolutionary search like
the hybrid to be effective even though the local heuristic
search is employed. In QAPs, it is difficult to look for
promising regions by exploiting the correlation structure
of local optima. In this sense, QAPs seem to be one of
the problems where the evolutionary search is less
effective than the SA.

Experiments were performed with smaller number of
evaluations (the total number of evaluations) to check
whether or not performance dependency on class of
problems is consistent. The results indicate that the
behaviors of the hybrid and the SA are not influenced by
the given number of evaluations.
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Fig. 4. Closeness/distance between local optima with respect
to the number of local optima. 100 local optima was found by
100 tuns of the hybrid. The point for 30 on the horizonial
axis denotes the average common edges (distance for QAPs)
of the best 30 local optima among 100 optima. (a) TSP of
random 100 cities (b) QAP of 72 facilities.

IV. Conclusions

In this paper, a new hybrid evolutionary algorithm
utilizing a local heuristic search, for combinatorial
optimization problems, was presented. The components of
the hybrid, competition schemes and restart methods were
described, and in particular, a new sophisticated local
heuristic search was introduced. The performance of the
proposed hybrid was investigated on two well-known
problems of different sizes: traveling salesman problems
(TSPs), and quadratic assignment problems(QAPs) and
compared with the performance of simulated annealing
and canonical evolutionary algorithms, The experimental
results have shown that the hybrid was clearly superior to
canonical evolutionary algorithms and was significantly
better than simulated annealing for TSPs, but not for
QAPs. The their behaviors seem to be caused by the
different characteristics of the search space of the two
problems. Although it is necessary to test the hybrid on
many classes of problems, compared with other currently
good search heuristics, we believe that there exisls a
class of problems where the hybrid is able to achieve
better performance than simulated annealing.
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