• 제목/요약/키워드: Hybrid Network System

Search Result 604, Processing Time 0.027 seconds

An Architecture and Performance Evaluation of RDCDN (Re-Distribution based CDN) (콘텐츠 재분배 기능을 갖는 CDN(Content Delivering Network) 구조 및 특성)

  • Sung, Moo-Kyung;Han, Chi-Moon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.6B
    • /
    • pp.559-567
    • /
    • 2009
  • Distributed Content Delivering Network (DCDN) will make use of the existing resources of the common Internet users in terms of storage space, bandwidth and Internet connectivity to create it. However DCDN has some limitations that are inefficient using of storage space, reliability and having special load balancing (LB) algorithm. So, this paper proposes Re-distribution based CDN (RDCDN) that overcomes the limitations of DCDN. RDCDN has the content re-distribution algorithm and separates surrogates to main surrogate and sub surrogates. Main surrogate can help service reliability be improved by storing all contents as back-up system. And content re-distribution algorithm also can help storage space be saved because all contents are not stored in every surrogate. Especially, when RDCwDN uses content re-distribution algorithm, it can work active load balancing function without extra LB algorithm like as DCDN. Results of simulation show that the proposed architecture can improve reliability and efficiency of storage space, and it also can offer the same performance as that of commercial CDN and DCDN.

A multi-layer approach to DN 50 electric valve fault diagnosis using shallow-deep intelligent models

  • Liu, Yong-kuo;Zhou, Wen;Ayodeji, Abiodun;Zhou, Xin-qiu;Peng, Min-jun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.148-163
    • /
    • 2021
  • Timely fault identification is important for safe and reliable operation of the electric valve system. Many research works have utilized different data-driven approach for fault diagnosis in complex systems. However, they do not consider specific characteristics of critical control components such as electric valves. This work presents an integrated shallow-deep fault diagnostic model, developed based on signals extracted from DN50 electric valve. First, the local optimal issue of particle swarm optimization algorithm is solved by optimizing the weight search capability, the particle speed, and position update strategy. Then, to develop a shallow diagnostic model, the modified particle swarm algorithm is combined with support vector machine to form a hybrid improved particle swarm-support vector machine (IPs-SVM). To decouple the influence of the background noise, the wavelet packet transform method is used to reconstruct the vibration signal. Thereafter, the IPs-SVM is used to classify phase imbalance and damaged valve faults, and the performance was evaluated against other models developed using the conventional SVM and particle swarm optimized SVM. Secondly, three different deep belief network (DBN) models are developed, using different acoustic signal structures: raw signal, wavelet transformed signal and time-series (sequential) signal. The models are developed to estimate internal leakage sizes in the electric valve. The predictive performance of the DBN and the evaluation results of the proposed IPs-SVM are also presented in this paper.

A Systems Engineering Approach for Predicting NPP Response under Steam Generator Tube Rupture Conditions using Machine Learning

  • Tran Canh Hai, Nguyen;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.94-107
    • /
    • 2022
  • Accidents prevention and mitigation is the highest priority of nuclear power plant (NPP) operation, particularly in the aftermath of the Fukushima Daiichi accident, which has reignited public anxieties and skepticism regarding nuclear energy usage. To deal with accident scenarios more effectively, operators must have ample and precise information about key safety parameters as well as their future trajectories. This work investigates the potential of machine learning in forecasting NPP response in real-time to provide an additional validation method and help reduce human error, especially in accident situations where operators are under a lot of stress. First, a base-case SGTR simulation is carried out by the best-estimate code RELAP5/MOD3.4 to confirm the validity of the model against results reported in the APR1400 Design Control Document (DCD). Then, uncertainty quantification is performed by coupling RELAP5/MOD3.4 and the statistical tool DAKOTA to generate a large enough dataset for the construction and training of neural-based machine learning (ML) models, namely LSTM, GRU, and hybrid CNN-LSTM. Finally, the accuracy and reliability of these models in forecasting system response are tested by their performance on fresh data. To facilitate and oversee the process of developing the ML models, a Systems Engineering (SE) methodology is used to ensure that the work is consistently in line with the originating mission statement and that the findings obtained at each subsequent phase are valid.

A Predictive Virtual Machine Placement in Decentralized Cloud using Blockchain

  • Suresh B.Rathod
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.60-66
    • /
    • 2024
  • Host's data during transmission. Data tempering results in loss of host's sensitive information, which includes number of VM, storage availability, and other information. In the distributed cloud environment, each server (computing server (CS)) configured with Local Resource Monitors (LRMs) which runs independently and performs Virtual Machine (VM) migrations to nearby servers. Approaches like predictive VM migration [21] [22] by each server considering nearby server's CPU usage, roatative decision making capacity [21] among the servers in distributed cloud environment has been proposed. This approaches usage underlying server's computing power for predicting own server's future resource utilization and nearby server's resource usage computation. It results in running VM and its running application to remain in waiting state for computing power. In order to reduce this, a decentralized decision making hybrid model for VM migration need to be proposed where servers in decentralized cloud receives, future resource usage by analytical computing system and takes decision for migrating VM to its neighbor servers. Host's in the decentralized cloud shares, their detail with peer servers after fixed interval, this results in chance to tempering messages that would be exchanged in between HC and CH. At the same time, it reduces chance of over utilization of peer servers, caused due to compromised host. This paper discusses, an roatative decisive (RD) approach for VM migration among peer computing servers (CS) in decentralized cloud environment, preserving confidentiality and integrity of the host's data. Experimental result shows that, the proposed predictive VM migration approach reduces extra VM migration caused due over utilization of identified servers and reduces number of active servers in greater extent, and ensures confidentiality and integrity of peer host's data.

Recommending Core and Connecting Keywords of Research Area Using Social Network and Data Mining Techniques (소셜 네트워크와 데이터 마이닝 기법을 활용한 학문 분야 중심 및 융합 키워드 추천 서비스)

  • Cho, In-Dong;Kim, Nam-Gyu
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.127-138
    • /
    • 2011
  • The core service of most research portal sites is providing relevant research papers to various researchers that match their research interests. This kind of service may only be effective and easy to use when a user can provide correct and concrete information about a paper such as the title, authors, and keywords. However, unfortunately, most users of this service are not acquainted with concrete bibliographic information. It implies that most users inevitably experience repeated trial and error attempts of keyword-based search. Especially, retrieving a relevant research paper is more difficult when a user is novice in the research domain and does not know appropriate keywords. In this case, a user should perform iterative searches as follows : i) perform an initial search with an arbitrary keyword, ii) acquire related keywords from the retrieved papers, and iii) perform another search again with the acquired keywords. This usage pattern implies that the level of service quality and user satisfaction of a portal site are strongly affected by the level of keyword management and searching mechanism. To overcome this kind of inefficiency, some leading research portal sites adopt the association rule mining-based keyword recommendation service that is similar to the product recommendation of online shopping malls. However, keyword recommendation only based on association analysis has limitation that it can show only a simple and direct relationship between two keywords. In other words, the association analysis itself is unable to present the complex relationships among many keywords in some adjacent research areas. To overcome this limitation, we propose the hybrid approach for establishing association network among keywords used in research papers. The keyword association network can be established by the following phases : i) a set of keywords specified in a certain paper are regarded as co-purchased items, ii) perform association analysis for the keywords and extract frequent patterns of keywords that satisfy predefined thresholds of confidence, support, and lift, and iii) schematize the frequent keyword patterns as a network to show the core keywords of each research area and connecting keywords among two or more research areas. To estimate the practical application of our approach, we performed a simple experiment with 600 keywords. The keywords are extracted from 131 research papers published in five prominent Korean journals in 2009. In the experiment, we used the SAS Enterprise Miner for association analysis and the R software for social network analysis. As the final outcome, we presented a network diagram and a cluster dendrogram for the keyword association network. We summarized the results in Section 4 of this paper. The main contribution of our proposed approach can be found in the following aspects : i) the keyword network can provide an initial roadmap of a research area to researchers who are novice in the domain, ii) a researcher can grasp the distribution of many keywords neighboring to a certain keyword, and iii) researchers can get some idea for converging different research areas by observing connecting keywords in the keyword association network. Further studies should include the following. First, the current version of our approach does not implement a standard meta-dictionary. For practical use, homonyms, synonyms, and multilingual problems should be resolved with a standard meta-dictionary. Additionally, more clear guidelines for clustering research areas and defining core and connecting keywords should be provided. Finally, intensive experiments not only on Korean research papers but also on international papers should be performed in further studies.

Cascade CNN with CPU-FPGA Architecture for Real-time Face Detection (실시간 얼굴 검출을 위한 Cascade CNN의 CPU-FPGA 구조 연구)

  • Nam, Kwang-Min;Jeong, Yong-Jin
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.388-396
    • /
    • 2017
  • Since there are many variables such as various poses, illuminations and occlusions in a face detection problem, a high performance detection system is required. Although CNN is excellent in image classification, CNN operatioin requires high-performance hardware resources. But low cost low power environments are essential for small and mobile systems. So in this paper, the CPU-FPGA integrated system is designed based on 3-stage cascade CNN architecture using small size FPGA. Adaptive Region of Interest (ROI) is applied to reduce the number of CNN operations using face information of the previous frame. We use a Field Programmable Gate Array(FPGA) to accelerate the CNN computations. The accelerator reads multiple featuremap at once on the FPGA and performs a Multiply-Accumulate (MAC) operation in parallel for convolution operation. The system is implemented on Altera Cyclone V FPGA in which ARM Cortex A-9 and on-chip SRAM are embedded. The system runs at 30FPS with HD resolution input images. The CPU-FPGA integrated system showed 8.5 times of the power efficiency compared to systems using CPU only.

Numerical simulation of groundwater flow in LILW Repository site:I. Groundwater flow modeling (중.저준위 방사성폐기물 처분 부지의 지하수 유동에 대한 수치 모사: 1. 지하수 유동 모델링)

  • Park, Kyung-Woo;Ji, Sung-Hoon;Kim, Chun-Soo;Kim, Kyung-Su;Kim, Ji-Yeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.265-282
    • /
    • 2008
  • Based on the site characterization works in a low and intermediate level waste(LILW) repository site, the numerical simulations for groundwater flow were carried out in order to understand the groundwater flow system of repository site. To accomplish the groundwater flow modeling in the repository site, the discrete fracture network(DFN) model was constructed using the characteristics of fracture zones and background fractures. At result, the total 10 different hydraulic conductivity(K) fields were obtained from DFN model stochastically and K distributions of constructed mesh were inputted into the 10 cases of groundwater flow simulations in FEFLOW. From the total 10 numerical simulation results, the simulated groundwater levels were strongly governed by topography and the groundwater fluxes were governed by locally existed high permeable fracture zones in repository depth. Especially, the groundwater table was predicted to have several tens meters below the groundwater table compared with the undisturbed condition around disposal silo after construction of underground facilities. After closure of disposal facilities, the groundwater level would be almost recovered within 1 year and have a tendency to keep a steady state of groundwater level in 2 year.

  • PDF

Educational Framework for Interactive Product Prototyping

  • Nam Tek-Jin
    • Archives of design research
    • /
    • v.19 no.3 s.65
    • /
    • pp.93-104
    • /
    • 2006
  • When the design profession started, design targets were mainly static hardware centered products. Due to the development of network and digital technologies, new products with dynamic and software-hardware hybrid interactive characteristics have become one of the main design targets. To accomplish the new projects, designers are required to learn new methods, tools and theories in addition to the traditional design expertise of visual language. One of the most important tools for the change is effective and rapid prototyping. There have been few researches on educational framework for interactive product or system prototyping to date. This paper presents a new model of educational contents and methods for interactive digital product prototyping, and it's application in a design curricula. The new course contents, integrated with related topics such as physical computing and tangible user interface, include microprocessor programming, digital analogue input and output, multimedia authoring and programming language, sensors, communication with other external devices, computer vision, and movement control using motors. The final project of the course was accomplished by integrating all the exercises. Our educational experience showed that design students with little engineering background could learn various interactive digital technologies and its' implementation method in one semester course. At the end of the course, most of the students were able to construct prototypes that illustrate interactive digital product concepts. It was found that training for logical and analytical thinking is necessary in design education. The paper highlights the emerging contents in design education to cope with the new design paradigm. It also suggests an alterative to reflect the new requirements focused on interactive product or system design projects. The tools and methods suggested can also be beneficial to students, educators, and designers working in digital industries.

  • PDF

A reach of the domestic production broadcasting equipment actual condition of usage investigation and trend through the broadcasting system tree analysis (방송시스템 트리분석을 통한 국산 방송장비 활용실태 조사와 동향 연구)

  • Seo, In-Ho;Choi, Seong-Jin;Park, Seung-Kyu
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.87-94
    • /
    • 2017
  • The broadcast service environment is changed to the complicated equipment configuration of the server and network-based for the advanced technology application and various service providings. The broadcasting market is growing rapidly by the development of broadcasting environment. But as to the domestic production broadcasting equipment industry, the satisfaction of request of the consumer and market competitive power is showing the limit due to the development of the single focused on goods and sale. This research gathered the opinion of the broadcasting technology experts and investigated the reality of usage of the domestic device in the broadcasting system. And according to the investigation result we discovers the hybrid system model that synergy can come out in which the domestic device more than 2 combines out and there is the purpose.

Application of Excitation Moment for Enhancing Fault Diagnosis Probability of Rotating Blade (회전 블레이드의 결함진단 확률제고를 위한 가진 모멘트 적용)

  • Kim, Jong Su;Choi, Chan Kyu;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.205-210
    • /
    • 2014
  • Recently, pattern recognition methods have been widely used by researchers for fault diagnoses of mechanical systems. A pattern recognition method determines the soundness of a mechanical system by detecting variations in the system's vibration characteristics. Hidden Markov models (HMMs) and artificial neural networks (ANNs) have recently been used as pattern recognition methods in various fields. In this study, a HMM-ANN hybrid method for the fault diagnosis of a mechanical system is introduced, and a rotating wind turbine blade with a crack is selected for fault diagnosis. The existence, location, and depth of said crack are identified in this research. For improving the diagnostic accuracy of the method in spite of the presence of noise, a moment with a few specific frequencies is applied to the structure.