Acknowledgement
This paper is funded by the Project for State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment (No.K-A2019.418), the Technical Support Project for Suzhou Nuclear Power Research Institute (SNPI, No.029-GN-b-2018-C45-P.0.99-00003), The Basic Research Project (No. JCKY2017xx7B019) and the Foundation of Science and Technology on Reactor System Design Laboratory (No. HT-KFKT-14-2017003).
References
- A. Ayodeji, Y.-k. Liu, Support vector ensemble for incipient fault diagnosis in nuclear plant components, Nucl. Eng. Technol. 50 (2018) 1306-1313. https://doi.org/10.1016/j.net.2018.07.013
- M. Peng, et al., An intelligent hybrid methodology of on-line system-level fault diagnosis for nuclear power plant, Nucl. Eng. Technol. 50 (2018) 396-410. https://doi.org/10.1016/j.net.2017.11.014
- A. Ayodeji, Y.-k. Liu, H. Xia, Knowledge base operator support system for nuclear power plant fault diagnosis, Prog. Nucl. Energy 105 (2018) 42-50. https://doi.org/10.1016/j.pnucene.2017.12.013
- A. Ayodeji, Y.-k. Liu, PWR heat exchanger tube defects: trends, signatures and diagnostic techniques, Prog. Nucl. Energy 112 (2019) 171-184. https://doi.org/10.1016/j.pnucene.2018.12.017
- Z. Guo, et al., Defect detection of nuclear fuel assembly based on deep neural network, Ann. Nucl. Energy 137 (2019) 107078.
- K. Ryu, et al., Pipe thinning model development for direct current potential drop data with machine learning approach, Nucl. Eng. Technol. 52 (2020) 784-790. https://doi.org/10.1016/j.net.2019.10.004
- J. Zhang, et al., Application of cost-sensitive LSTM in water level prediction for nuclear reactor pressurizer, Nucl. Eng. Technol. 52 (2020) 1429-1435. https://doi.org/10.1016/j.net.2019.12.025
- J. Park, et al., MRPC eddy current flaw classification in tubes using deep neural networks, Nucl. Eng. Technol. 51 (2019) 1784-1790. https://doi.org/10.1016/j.net.2019.05.011
- J. Liu, et al., Nuclear power plant components condition monitoring by probabilistic support vector machine, Ann. Nucl. Energy 56 (2013) 23-33. https://doi.org/10.1016/j.anucene.2013.01.005
- H.A. Gohel, et al., Predictive maintenance architecture development for nuclear infrastructure using machine learning, Nucl. Eng. Technol. 52 (2020) 1436-1442. https://doi.org/10.1016/j.net.2019.12.029
- A. Ayodeji, Y.-k. Liu, SVR optimization with soft computing algorithms for incipient SGTR diagnosis, Ann. Nucl. Energy 121 (2018) 89-100. https://doi.org/10.1016/j.anucene.2018.07.011
- Z. Yangping, Z. Bingquan, W. DongXin, Application of genetic algorithms to fault diagnosis in nuclear power plants, Reliab. Eng. Syst. Saf. 67 (2000) 153-160. https://doi.org/10.1016/S0951-8320(99)00061-7
- B. Yang, et al., Application of total variation denoising in nuclear power plant signal pre-processing, Ann. Nucl. Energy 135 (2020) 106981. https://doi.org/10.1016/j.anucene.2019.106981
- J. Jiao, et al., Hierarchical discriminating sparse coding for weak fault feature extraction of rolling bearings, Reliab. Eng. Syst. Saf. 184 (2019) 41-54. https://doi.org/10.1016/j.ress.2018.02.010
- J. Yang, J. Kim, An accident diagnosis algorithm using long short-term memory, Nucl. Eng. Technol. 50 (2018) 582-588. https://doi.org/10.1016/j.net.2018.03.010
- Y. Liu, et al., A cascade intelligent fault diagnostic technique for nuclear power plants, J. Nucl. Sci. Technol. 55 (2018) 254-266. https://doi.org/10.1080/00223131.2017.1394228
- A.R. Marklund, F. Michel, Application of a new passive acoustic leak detection approach to recordings from the Dounreay prototype fast reactor, Ann. Nucl. Energy 85 (2015) 175-182. https://doi.org/10.1016/j.anucene.2015.05.010
- W. Hwang, et al., Acoustic emission characteristics of stress corrosion cracks in a type 304 stainless steel tube, Nucl. Eng. Technol. 47 (2015) 454-460. https://doi.org/10.1016/j.net.2015.04.001
- Z.W. Jianguo, Support vector machine modeling and its intelligent optimization, in: Proceeding of International Conference on Information Computing and Automation Beijing, China, 2008. April 25-28.
- F. Van den Bergh, A.P. Engelbrecht, A study of particle swarm optimization particle trajectories, Inf. Sci. 176 (2006) 937-971. https://doi.org/10.1016/j.ins.2005.02.003
- M. Guo, et al., Research on an integrated ICA-SVM based framework for fault diagnosis, in: SMC'03 Conference Proceedings. IEEE International Conference on Systems, Man and Cybernetics. Conference Theme-System Security and Assurance, Washington DC, USA, 2003, 8-8 October.
- L.Y. Jianwei, L. Xionglin, Research and development on deep learning, J. Comput. Appl. 31 (2014) 1922-1928.
- Y. Chen, D.-Q. Zheng, et al., Chinese relation extraction based on deep belief nets, Ruanjian Xuebao/J. Softw. 23 (2012) 2572-2585.
- Z.J. Licheng, et al., Deep Learning, Optimization and recognition(Chinese), Tsinghua University Press, Beijing, 2017, p. 58.
- C. Guoliang, Condition Recognition and Quantitative Analysis of Internal Leaks through Valves Based on Acoustic Emission Method (Chinese), China University of Petroleum Press, 2014, p. 17.
- A. Ayodeji, et al., Acoustic signal-based leak size estimation for electric valves using deep belief network, 5th International Conference on Computer and Communications (ICCC), Chengdu, China, Dec 6-9, 2019.