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Abstract : Accidents prevention and mitigation is the highest priority of nuclear power plant (NPP) operation, 

particularly in the aftermath of the Fukushima Daiichi accident, which has reignited public anxieties and 

skepticism regarding nuclear energy usage. To deal with accident scenarios more effectively, operators must 

have ample and precise information about key safety parameters as well as their future trajectories. This 

work investigates the potential of machine learning in forecasting NPP response in real-time to provide an 

additional validation method and help reduce human error, especially in accident situations where operators 

are under a lot of stress. First, a base-case SGTR simulation is carried out by the best-estimate code 

RELAP5/MOD3.4 to confirm the validity of the model against results reported in the APR1400 Design Control 

Document (DCD). Then, uncertainty quantification is performed by coupling RELAP5/MOD3.4 and the 

statistical tool DAKOTA to generate a large enough dataset for the construction and training of neural-based 

machine learning (ML) models, namely LSTM, GRU, and hybrid CNN-LSTM. Finally, the accuracy and 

reliability of these models in forecasting system response are tested by their performance on fresh data. To 

facilitate and oversee the process of developing the ML models, a Systems Engineering (SE) methodology is 

used to ensure that the work is consistently in line with the originating mission statement and that the 

findings obtained at each subsequent phase are valid.
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1. Introduction

In recent years, machine learning (ML) and 

particularly deep learning have attracted a lot 

of attention due to their numerous remarkable 

advancements in perceptual areas that were 

previously believed to be limited to humans 

such as image classification, speech 

recognition, digital assistants, ad-targeting, 

etc..[11] One area where the strength of 

neural networks in handling large amounts of 

data has been increasingly exploited is 

time-series forecasting. This ability can be 

utilized in nuclear engineering to forecast 

important safety factors accurately, quickly, 

and reliably for accident management. 

Additionally, ML can be used to perform 

various nuclear simulations – such as 

thermal-hydraulic uncertainty quantification in 

this case – at a significantly lower cost and in 

a much shorter time.

 The present analysis centers on a Steam 

Generator Tube Rupture (SGTR) with a 

concurrent loss of offsite power (LOOP). 

SGTR accident scenario is unique in that it has 

the potential to create a direct line of fission 

release to the environment with the mixing of 

primary and secondary coolant combined with 

steam discharge through the Main Steam 

Safety Valves (MSSVs). Following the 

Fukushima accident, the Korean Government 

added to its regulatory guidelines for severe 

accident management plants that radiation 

limits at the boundaries of plant sites should 

be less than 250 mSv.[8] The possibility of 

containment bypass due to SGTR has become 

a significant concern as it accounts for more 

than half of the likelihood of direct radiation 

release to the environment according to 

probabilistic safety analysis. There have been 

11 occurences of SGTR including one incident 

at Hanul unit 4 OPR100 NPP in 2002.[8] 

SGTR can be the result of multiple degradation 

processes leading to wall thinning, tube 

cracking, and mechanical defects, or it can be 

thermally induced by accident conditions 

leading to superheated steam circulating in hot 

legs. This analysis considers the scenario of a 

spontaneous guillotine break on one U-tube 

leading to rapid primary-to-secondary side 

leakage and a resultant increase in secondary 

pressure. 

2. Objective

The goal of the study is to develop robust 

ML models harnessing the flexibility and 

strengths of neural networks to make 

predictions on system response under SGTR 

accident conditions with high accuracy and 

efficiency.

This paper demonstrates how a Systems 

Engineering approach was adopted as a guiding 

structure for the consistent, and efficient 

realization of the project each step of the way. 

Specifically, the Kossiakoff method of 

Systems Engineering[1], comprised of four 

successive steps as shown in Figure 1, is used 

in this work to arrive at the stated objective. 

1. Requirement analysis (Problem definition)

2. Function definition (functional analysis 

and allocation)

3. Physical definition (synthesis, physical 

analysis, and allocation)

4. Design validation (verification and 
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evaluation)

[Figure 1] Engineering Method

According to the SE approach, the first step 

in effectively planning and managing a project 

is to identify the various stakeholders, their 

needs, and requirements. Next, the system 

architecture must be developed, and a set of 

verification and validation activities must be 

created to make sure all requirements are 

satisfied by predetermined success criteria at 

each stage of development. An activity 

hierarchy was developed to identify and keep 

track of the most important characteristics 

relevant to the overarching mission of the 

project.

3. Work Breakdown Structure

After the hierarchy is established, the 

project is split into manageable tasks. The 

work breakdown structure outlines the steps 

involved in bringing the project to fruition. 

Work breakdown structure involves the 

following steps, which can be further split into 

two groups: thermal-hydraulic model 

development (steps 1-4) and ML model 

development (steps 5-9). For the sake of 

brevity, the description of each task is reduced 

to its essentials. The sections that follow offer 

additional details.

[Figure 2]  Activity Hierarchy Work Breakdown 

Structure

1. Construct and validate the steady-state 

APR1400 model with initial conditions 

matching the conservative assumptions 

employed in DCD SGTR accident analysis 

using the simulation tool RELAP5/ 

MOD3.4

2. Simulate SGTR transient conditions in 

RELAP5/MOD3.4. Results of key 

parameters are once again compared to 

those reported in the DCD to ensure 

reasonable agreement and therefore 

validate the thermal-hydraulic model.

3. Identify uncertain parameters important 

for the scenario and gather their 

statistical information expressed by the 

probability density function (PDF)
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4. Perform uncertainty quantification by 

loosely coupling RELAP5/MOD3.4 and 

DAKOTA. Uncertainties are propagated 

based on their PDF. Uncertainty bands 

for key system response are obtained as 

a result.

5. Selecting architecture for ML models 

development based on their applicability 

to predict NPP response accurately, at 

the same time, cutting down on costs and 

time. 

6. Data-preprocessing which consists of 

normalization, splitting (into three 

categories as is the standard for ML: 

training, testing, and validation), and 

transformation into the appropriate 3-D 

structure.

7. Hyper-parameters selection and tuning 

to optimize performance and minimize the 

loss function.

Models make predictions on data it has 

never seen before (test data). Any 

discrepancies between predicted values and 

actual values are observed and quantified, 

along with learning curves for each model to 

show a complete picture of the performance of 

each model.

4. Requirements Development

The requirements of this work can be 

categorized into four groups: mission 

requirements, originating requirements, system 

requirements, and component requirements as 

summarized in Table 2.

<Table 1> Model Requirements 

The mission requirements reflect the need 

to have multiple validated ML models with the 

capacity and potential to provide valuable 

assistance and act as an additional guiding tool 

Requirements Descriptions

Mission 

Requirements

 ML models shall predict NPP 

response under SGTR 

conditions accurately, 

efficiently, and quickly. 

Originating 

Requirements

 UQ Model: Uncertainty band 

within 95/95 tolerance limits, 

identify most probable 

response from results 

post-processing uncertainty 

analysis.

 ML Model:  checked using 

evaluation metrics. 

Systems 

Requirements

 Guillotine break on U- tube.

 Offsite power is unavailable.

 Reactor Coolant Pumps are 

unavailable.

 Control system actuations 

during the transient are 

assumed to be at nominal 

setpoint values.

 Passive safety systems are 

available.

 Transient calculation lasts  

30 minutes.

 No operator action is included 

in the analysis.

Component 

Requirements

 The codes must be able to 

give a detailed representation 

of thermal-hydraulic and 

reactor kinetics phenomena.

 The simulation model must 

resemble actual plant 

behavior both during steady 

state and SGTR transient.

 Uncertainty quantification 

framework must be followed 

closely and take all uncertain 

parameters that best 

represent the governing 

phenomena into account.

 ML models must be accurate, 

precise, and efficient.  
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in emergencies. The model shall perform 

accurately, efficiently, and robustly using a 

purely data-driven approach. The results 

obtained shall be replicable through various 

runs. Lastly, ML model should perform more 

quickly than the physics-based model. 

The originating requirements are thus 

derived from the mission requirements. To 

accomplish the mission requirements, the ML 

models must have a large reservoir of 

knowledge/database about every possible 

scenario related to SGTR built on realistic 

assumptions and after accounting for all 

sources of uncertainties. This can be done 

using uncertainty quantification (UQ). The 

requirement for UQ results is to satisfy the 

95/95 tolerance limit. While the requirement 

for ML models is based on the evaluation of 

ML results and performance metrics.   

System requirements detail the assumptions 

and constraints placed on the NPP system for 

the SGTR scenario being considered. These 

requirements act as the basis for safety 

analysis and ensure the results are comparable 

to those listed in the APR1400 Design Control 

Document.    

Component requirements outline standards 

for selecting a suitable simulation tool to 

guarantee that the model constructed obtains a 

reasonably high degree of accuracy and 

realistic results. RELAP5/MOD3.4 calculates 

equations of state, reactor kinetics, transport 

of non-condensable gases, and fluid behavior 

to determine the overall Reactor Coolant 

System (RCS) thermal-hydraulic phenomena. 

The code package RELAP5/MOD3.4 has been 

used by the US Nuclear Regulatory 

Commission (USNRC) to conduct safety 

analysis for licensing and continues to enjoy 

wide usage within the nuclear safety 

community. Numerous benchmark experiments 

have been conducted over the years to verify 

the code's ability to execute best-estimate 

plus uncertainty quantification, which seeks to 

replicate NPP behavior as closely as possible.

At the same time, the ML architecture 

selected to carry out the project should be 

capable of handling large datasets as well as 

benefiting from the enhanced scale and 

dimensionality of said data. Notably, it should 

be able to solve sequence problems, learn 

from the past, remember the patterns over 

long continuous sequences and selectively 

apply what it learns to predict future values. A 

final requirement is the ML architecture of 

choice should have the capacity to discern 

non-linear relationships embedded in the data. 

These factors suggest that the recurrent 

neural networks of LSTM, GRU, and 

CNN-LSTM, could yield successful results.

5. System Architecture

This subsection describes the functional and 

physical architecture in relation to the stated 

requirements. This relationship is summarized 

in Table 2.  

5.1. Functional Architecture

Functional architecture describes the main 

function of safety and non-safety related NPP 

systems in an SGTR scenario to limit the 

radiological consequences of the accident and 

avoid progression into more severe accident 

conditions. Overall, it encompasses three main 
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functions: prevent SG overfill, maintain cooling, 

and limit containment bypass. First, Main 

Steam Safety Valves open on the affected 

Steam Generator (SG) to offset the sudden 

spike in secondary pressure due to incoming 

primary coolant and closing of Turbine Control 

Valve. Over the longer-term, operator action 

is taken to completely isolate the affected SG 

to stop the collapsed water level from rising 

leading to coolant overfilling SG, and 

infiltrating the Main Steam Line, failing both 

the Main Steam Line and the Main Steam 

Safety Valve which will have grave 

consequences. Secondly, core cooling must be 

maintained at all times to avoid the entrance of 

severe accident conditions. Thirdly, 

containment bypass shall be minimized or 

entirely avoided when action is taken to 

ensure no part of the secondary pressure 

boundary is breached, and primary-to- 

secondary leakage is kept to a minimum. The 

details of each NPP function are shown in 

Figure 4. It should be noted that only 

automatic functions are reflected in the 

thermal-hydraulic model. 

[Figure 3] Functional Architecture

ML models’ functional architecture covers 

the stages of development, validation, and 

deployment of the model to make accurate 

predictions on key parameters as a function of 

time. The development consists of two initially 

separate phases that can be carried out in 

parallel with each other: first, the selection of 

appropriate ML architecture and the 

construction of a bare model with the attendant 

components i.e. network topology and 

hyper-parameters; and second, data 

generation via thermal-hydraulic uncertainty 

quantification and data pre-processing. 

Naturally, these two phases then coalesce for 

the model training on available data, 

optimization of network structure, tuning of 

hyper-parameters, and validation of future 

predictions. 

<Table 2> Functional and Physical Architecture

Requirements
Functional 

Architecture

Physical 

Architecture

Steady-state 

validation

Safety and 

non-safety 

components 

for normal  

operation  

RELAP5 

steady-state 

input

Transient 

validation

Components 

related to 

SGTR

RELAP5 

transient input

Uncertainty 

quantification

Uncertainty 

sampling & 

propagation

DAKOTA input, 

python interface,

RELAP5 adjusted 

input 

NPP forecast 

based on ML 

model

ML model 

development, 

training and 

testing

Dataset from UQ,

LSTM, GRU, 

CNN-LSTM 

architecture 

written in 

python,

Talos 

optimization tool
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5.2. Physical Architecture

The physical architecture entails NPP 

systems and components available during the 

SGTR scenario. These systems ensure the 

functional architecture is carried out. The 

details of the APR1400 model will be 

described in more detail in Section 7. 

Components playing a prominent role in SGTR 

with LOOP transients are Reactor Coolant 

Pumps (RCP) and Safety Injection Pumps 

(SIP) on the primary side. The coastdown of 

RCPs contributes to decay heat accumulation 

and worsening accident consequences while 

SIPs serve to recover the Pressurizer level 

and maintain core cooling. On the secondary 

side, significant components include the MSSV, 

Turbine-driven Auxiliary Feedwater Pumps 

(TDAFW), Main Steam Isolation Valve 

(MSIV), and Turbine Control Valve (TCV). 

MSSV is the main means of steam removal. 

MSIV acts to isolate the affected SG. TCV 

isolates the turbine from the rest of the 

system and TDAFWs on the intact SG 

facilitate the feed and bleed operation which is 

the main method of heat removal of the RCS to 

bring it to safe shutdown conditions. APR1400 

system is described using the code 

RELAP5/SCDAP to accurately simulate the 

plant's response under both steady-state and 

transient conditions.

  

[Figure 4] Neural Network Architecture

The physical architecture of neural networks 

is shown in Figure 4 with RNN (left) and ANN 

(right). Similar to Artificial Neural Network 

(ANN), RNN consists of an input layer, 

several hidden layers, and an output layer 

each made up of a varying number of neurons 

closely connected to process any given 

information and detect the governing 

mathematical structure. The network utilizes a 

system of weights, biases, and feedback 

signals to uncover the mathematical structure 

of the input data and extrapolate future values 

based on these well-learned patterns. The 

unique feature of RNN lies in a feedback loop 

on each layer to account for not only the 

current input but also information from 

previous sequences, storing it in what is called 

a ‘hidden state’. This hidden state is passed 

and updated subsequently through each 

successive layer, as weights and biases are 

shared across the entire network, to 

accomplish the same prediction task. RNN’s 

internal memory makes it the preferred option 

for solving sequential problems. It should be 

noted that ML models employed in the current 

work are more advanced variations on RNN 

architecture (i.e. LSTM, GRU & CNN-LSTM) 

which use gated mechanisms to enable 

selective memorization and long-term 

dependencies. 

6. Thermal-Hydraulic Model 

As mentioned earlier, the first phase of the 

project involves using the best-estimate code 

RELAP5/SCDAP3.4 to simulate NPP response 

under the SGTR scenario with LOOP. Results 
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of steady-state and transient calculations are 

compared with DCD analysis to ensure the 

validity of the model. The nodalization of the 

employed model is provided in Figure 5. 

The model consists of the Reactor Coolant 

System (RCS) on the primary side and two 

Steam Generators (SG) on the secondary side. 

Main components within the RCS include 

Reactor Pressure Vessel (RPV), 4 cold legs 

and 2 hot legs, and the Pressurizer (PZR) 

connected to one of the hot legs via a Surge 

Line. The coolant is circulated through the 

RCS via 4 Reactor Coolant Pumps (RCPs), one 

on each cold leg. The Pilot-Operated Safety 

Relief Valve (POSRV) on top of the PZR is 

connected to the containment to provide rapid 

depressurization for RCS in emergencies, 

although this function will not factor in the 

present analysis. 

The secondary system represents the two 

loops, each including a steam Generator (SG) 

that houses the u-tubes which act as an 

interface across which the heat is transferred 

from the primary to the secondary side. The 

SGs are connected to the turbine through the 

Main Steam Lines (MSLs) hosting 2 Main 

Steam Isolation Valves (MSIVs), 10 Main 

Steam Safety Valves (MSSVs), 2 Turbine 

Control Valves (TCVs), and 2 Atmospheric 

Dump Valves (ADVs) which are also 

connected to a time-dependent volume 

representing the containment. The MSIVs halt 

the flow of steam from the SGs to the turbine 

while MSSVs modulate SGs pressure within 

the safety range. The TCV isolates the turbine 

from the rest of the system when the reactor 

trips whereas the ADV allows the operators to 

perform manual depressurization on the 

secondary side. The Auxiliary Feedwater 

(AFW) system is also modeled to replenish 

[Figure 5] APR1400 Nodalization
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the SGs once the water level drops below the 

setpoint. The main feedwater system (MFWS) 

is lost under loss of offsite power (LOOP). 

The turbine is represented as a boundary 

condition using a time-dependent volume.  

The break is simulated using a variable trip 

connecting one volume on the SG tube side 

with one volume on the SG shell side. To 

initiate the accident, this trip is activated at 

the beginning of the transient calculation.

7. Accident Description

SGTR is an initiating event that results in a 

decrease in RCS inventory. It shares some 

common characteristics with a loss-of- 

coolant-accident (LOCA) such as a decrease 

in Pressurizer (PZR) pressure and PZR level. 

But SGTR differs in that containment conditions 

remain unchanged while the secondary side 

indicators show signs of abnormalities i.e. 

rising water level in affected SG level and 

secondary pressure spike resulting in MSSV 

opening. Safety Injection Pumps are actuated at 

PZR low-level signal. Reactor trip happens 

early on high SG level signal. However, decay 

heat accumulates and heat transfer conditions 

on the primary side deteriorate following the 

loss of forced flow. Auxiliary Feedwater is 

actuated for the intact SG on low SG level 

signal to carry on heat removal function in the 

absence of the broken SG. 

8. Uncertainty Quantification

The second piece of this work, and of best 

estimate plus uncertainty analyses, is 

uncertainty quantification. APR1400 

simulations under SGTR with concurrent LOOP 

conditions are loosely coupled with the 

statistical tool DAKOTA to acquire the 

unknown range for important safety 

parameters and obtain a sizeable database to 

train ML models. This framework is shown in 

Figure 6. Uncertainty quantification is the 

process of generating the distribution of output 

parameters based on the distribution of input 

uncertain parameters. The first step, which is 

of vital importance, is to acquire knowledge of 

key uncertain input parameters that best 

describe the underlying phenomena of SGTR 

scenario. To complete this step, the 

phenomena identification and ranking table 

(PIRT) developed by Westinghouse on SGTR 

(Wilson et al., 1997), along with work by Ahn 

et al. (2008) on the state of PIRT 

development for Korean NPPs and work by 

Youn et al. (2017) on PIRT for 

Multiple-SGTR as a design extension 

condition is extensively utilized as key 

references. Each of the identified uncertain 

parameters is described by a probability 

distribution function which includes range, 

mean and standard deviation, as well as the 

type of distribution. Then, input uncertainty 

ranges are propagated into the 

thermal-hydraulic model using a simple Monte 

Carlo simulation. The number of samples is 

determined by Wilk’s formula based on a 

chosen Wilk’s order, a given probability 

distribution, and a confidence limit. This study 

adheres to the USNRC criteria of 95% 

confidence with 95% probability, and a Wilk’s 

order of 5th as recommended by previous 

studies.[13] The results obtained from this 
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procedure are thermal-hydraulic calculations 

under various perturbations of input conditions.

[Figure 6] Uncertainty Quantification framework

The quantity of data required for ML 

development cannot be determined with 

absolute certainty. For deep learning models, 

as used in this study, bigger data usually 

means better results.[12] The optimal dataset 

size should be determined, however, using a 

trial-and-error approach where model skill is 

evaluated against different data sizes since 

more data will drastically slow down the 

model. More crucially, outliers and edge 

situations must be included in the data 

provided because ML can only learn from 

examples and any cases outside this domain 

are not likely to be predicted by the model. In 

this sense, uncertainty quantification is 

important because it not only generates a 

significant amount of data (hundreds of 

thousands of examples or more), but also 

guarantees that the data is statistically 

representative of the key input uncertain 

parameters. By definition, the dataset obtained 

from uncertainty quantification is reasonably 

representative of the problem at hand which 

makes it a good fit for ML.

9. Machine Learning Model 

In this work, RNN-based structures LSTM, 

GRU, and hybrid CNN-LSTM are used to 

discern temporal patterns in datasets and make 

predictions on future trajectories of significant 

NPP safety parameters. The models learn by 

computing the difference between the 

predicted output and the actual output at each 

timestep to make appropriate adjustments in 

its structure to gradually arrive at the lowest 

possible error. 

The following steps are taken to develop a 

robust ML model to predict NPP response in 

the event of an SGTR accident

1. Selection of input parameters. 

Input parameters with high correlations to 

key safety parameters of interest are 

selected to increase model performance.

2. Data preprocessing. 

This step includes data clearning, data 

normalization, data transformation and 

data splitting. 2D static data is 

transformed into 3-D data with an 

additional dimension of time.

3. Hyper-parameter tuning.

Hyper-parameters are the building 

blocks of machine learning models. They 

determine how well the model can 

capture the relationships both between 

the input features and between input and 

output features. As such, hyper- 

parameter tuning is crucial to achieving 

good prediction accuracy. Many 

hyper-parameters can be tuned i.e. 

learning rate, number of hidden layers, 

number of nodes for each layer, 

activation function, number of epochs, 
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batch size, etc. This process can be very 

lengthy and tedious and so it was 

assisted by the open-source tool Talos, 

which test different combinations of 

hyper-parameters from a pre-defined 

search dictionary and return the 

corresponding evaluation metric of choice. 

The machine learning workflow and Talos 

loop are shown in Figure 7. 

4. Model evaluation.

The final step is to evaluate the model’s 

ability to learn meaningful structures 

within the data and generalize what it has 

learned on fresh data to make accurate 

predictions.

[Figure 7] Machine Learning workflow 

10. Implementation Phase

In this phase, each step described in the 

previous sections is carried out. Once the 

trained model has been validated, it can 

accurately and promptly predict any future 

system response given a defined set of input 

parameters. For example, future values of RCS 

pressure can be predicted by the model 

provided it has information on past values of 

RCS pressure and related parameters such as 

SG pressure, RCS temperature, and leakage 

flow. Results of prediction for four key safety 

parameters using various machine learning 

architectures are shown in Figure 8-11. 

Predictions are also compared with actual 

values from the physics-based model, showing 

high accuracy with little discrepancies across 

different models. 

[Figure 8] Prediction for RCS pressure

[Figure 9] Prediction for affected SG pressure

[Figure 10] Prediction for tube leakage rate
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[Figure 11] Prediction for integrated MSSV flow

11. Verification and Validation Phase

A V-model (Figure 12) is used to delineate 

the project, control the quality, and reduce 

error throughout by dividing the work into four 

major stages each concluding with an 

applicable verification and validation test. This 

procedure also ensures that the project stays 

true to its stated goals.

[Figure 12] V-Diagram

At the most basic level, unit testing is done 

by running the core TH and ML models 

independently to make sure every component 

is working properly and matching reference 

results. Steady-state validation results, shown 

in Table 3, show reasonable agreement 

between the model and corresponding 

APR1400 DCD values.

Parameter DCD Model

Initial core power level, 

MWt
4,062.66 4,062.66

Initial core inlet 

temperature, K
568.15 569.22

Initial pressurizer 

pressure,MPa (Primary 

pressure)

16.03 16.03

Initial core mass flow, 

kg/s
19,344 19,347

Maximum radial peaking 

factor 
1.9786 1.9

Moderator temperature 

coefficient, 10-4 Δρ/oC
0.0 0.0

Doppler coefficient
Least 

negative

Least 

negative

CEA worth at trip, % Δρ -8.0 -8.0

<Table 3> Steady-state validation for APR1400

Integration testing is done by combining the 

models then training and refining the ML 

models on the dataset generated by the 

previous TH methodology. Moving up one 

level, system testing refers to model capability 

verification by making predictions on the 

unseen test dataset. The model's effectiveness 

is evaluated for overfitting, underfitting, which 

are common problems in training ML models. 

The model’s capacity to generalize learning 

patterns on new data is also an important 

evaluation point. Any bugs and lingering 

problems with the model should be resolved 

by this stage. The model's capability in an 

uncontrolled environment is verified during the 

final test, known as acceptance testing. RNN 

model evaluation metrics used in this study 

include mean squared error (MSE), mean 

absolute error (MAE), root mean square error 

(RMSE), and coefficient of determination (R2). 

These metrics are defined as follows:
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High-fidelity models are expressed by low 

errors approaching 0 and high R2 approaching 

1 (Table 4).

<Table 4> ML model performance metrics

Parameter ML Models MSE RMSE MAE R2

RCS 
pressure

LSTM
GRU
CNN-LSTM

0.0048
0.0049
0.0053

0.0694
0.0700
0.0730

0.0076
0.0119
0.0058

0.9994
0.9993
0.9946

Tube 
leakage 
rate

LSTM
GRU
CNN-LSTM

0.0177
0.0173
0.0174

0.1330
0.1315
0.1318

0.0166
0.0155
0.0132

0.9978
0.9978
0.9826

A f f e c t e d 
SG 
pressure

LSTM
GRU
CNN-LSTM

0.0072
0.0074
0.0070

0.0851
0.0857
0.0837

0.0190
0.0146
0.0174

0.9981
0.9980
0.9929

Integral 
MSSV 
flow 

LSTM
GRU
CNN-LSTM

0.0088
0.0089
0.0091

0.0948
0.0943
0.0954

0.0081
0.0126
0.0145

0.9988
0.9989
0.9908

12. Conclusion

A Systems Engineering approach was 

adopted to systematically facilitate and monitor 

the development of robust ML models to 

forecast key safety parameters under SGTR 

accident conditions. A series of verification 

and validation steps are carried out to 

ascertain that the requirements with 

established success criteria are met for each 

stage. It is hoped that this project can provide 

a missing piece to the expanding puzzle of ML 

applications in accident management and 

create a knowledge base for the development 

of a more comprehensive guidance tool under 

more severe accident conditions. 

The developed models demonstrated the 

ability to make predictions for SGTR system 

behavior with a high degree of accuracy and 

precision at a much lower computational cost 

than conventional physics-based models. 

Another significant benefit is the ability of 

machine learning models to continuously adapt 

and adjust themselves based on fresh incoming 

data. This characteristic makes them suitable 

as real-time tools that collect and interpret 

data from sensors at the moment of an 

accident to provide timely and useful 

assistance.
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