• Title/Summary/Keyword: Hybrid Condition

Search Result 757, Processing Time 0.033 seconds

Dynamic Hybrid Position/Gorce Control of 2 D.O.F. Flexible Manipulators

  • Yoshikawa, Tsuneo;Harada, Kensuke
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.340-345
    • /
    • 1994
  • Dynamic hybrid position/force control of flexible manipulators is proposed. First, a 2 D.O.F. flexible manipulator is modeled using the spring-mass model. Second, the equation of motion considering the tip constraints is derived. Third, hybrid position/force control algorithm is derived. In this control algorithm, the differentiable order of the desired trajectory and the stability condition are different from the case of rigid manipulators. Lastly, to verify the effectiveness of the proposed control algorithm, simulation results are presented.

  • PDF

A study on optimal tuning method of hybrid controller

  • Oh, Sung-Kwun;Ahn, Tae-Chon;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.276-280
    • /
    • 1992
  • In the paper, an optimal tuning algorithm is presented to automatically improve the performance of a hybrid controller, using the simplified reasoning method and the proposed complex method. The method estimates automatically the optimal values of the parameters of a hybrid controller, according to the change rate and limitation condition of output, The controller is applied to plants with time-delay. Then, computer simulations are conducted at step input and the performances are evaluated in the ITAE.

  • PDF

Cavitation Damage Behavior for 431 Stainless Steel by Hybrid Test in Sea Water (해양 환경 하에서 431 스테인리스강의 하이브리드 실험을 통한 캐비테이션 손상 거동)

  • Chong, Sang-Ok;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.46 no.6
    • /
    • pp.271-276
    • /
    • 2013
  • The demand for stainless steel is continuously increasing with the development in offshore industry due to its excellent corrosion resistance characteristics. However, it suffers cavitation-erosion in application of high rotating fluid and the damage accelerates in combination with electrochemical corrosion because of Cl-ion in sea water. This paper investigated the complex damage behavior for 431 stainless steel, that is one of martensite stainless steels, through the hybrid test in sea water. Various experiments were carried out, including potential measurement, anodic/cathodic polarization experiment and Tafel analysis. Surface morphology was observed and damage depth was analyzed by SEM and 3D microscope after each experiment, respectively. The results revealed that more active potential was observed under cavitation condition than static condition due to breakdown of passive film and activation of charge transfer, and that higher corrosion current density was obtained under cavitation condition due to synergistic effect of corrosion and erosion.

A Hybrid Anti-islanding Detection Scheme for Utility Interactive Inverter with Enhanced Harmonic Extraction Capability (향상된 고조파 검출 능력을 갖는 계통연계 인버터의 하이브리드 단독운전 방지기법)

  • Kang, Sung-Wook;Kim, Kyeong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.312-319
    • /
    • 2014
  • When distributed generation such as a wind power system is connected to the grid, it should meet grid requirements like IEEE Std. 1547, which regulates the anti-islanding method. Since the islanding may cause damage on electrical equipments or safety hazards for utility line worker, a distributed generation should detect it as soon as possible. This paper proposes a hybrid anti-islanding method coupled with the active and passive detection methods. To enhance the harmonic extraction capability for an active harmonic injection method, cascaded second-order band-pass filter and signal processing scheme are employed. Simulation and experiments are carried out under the islanding test condition specified in IEEE Std. 1547. Passive over/under voltage and over/under frequency methods are combined with the active method to improve the detection speed under certain condition. The simulation and experimental results are presented to verify that the proposed hybrid anti-islanding method can effectively detect the islanding.

Proposal of a Novel Plug-in-hybrid Power System Based on Analysis of PHEV System (PHEV 시스템의 분석을 통한 신 PHEV 동력 시스템 제안)

  • Kim, Jinseong;Park, Yeongil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.436-443
    • /
    • 2015
  • In order to develop the PHEV(plug-in hybrid electric vehicle), the specific power transmission systems considering the PHEV system characteristics should be applied. A PHEV applied to series-parallel type hybrid power transmission system is a typical example. In this paper, the novel hybrid power systems are proposed by analyzing the existing PHEV system. The backward simulation program is developed to analyze the fuel efficiency of hybrid power system. Quasi-static models for each components such as engine, motor, battery and vehicle are included in the developed simulation program. To obtain an optimal condition for hybrid systems, an optimization approach called the dynamic programming is applied. The simulation is performed in various driving cycles. A weakness for the existing system is found through the simulation. To compensate for a discovered weakness, novel hybrid power systems are proposed by adding or moving the clutch to the existing system. Comparing the simulation results for each systems, the improved fuel efficiency for proposed systems are verified.

A Study for Safety Evaluation of the Prestressed Hybrid Beam with T-shape Steel Member which was Developed to Build Large Span Educational Facilities (대공간 교육시설 축조를 위하여 개발된 T형 강재를 이용한 프리스트레스트 합성보의 안전성 평가를 위한 연구)

  • Lee, Kyoung-Hun;Kim, Tae-Hui
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.9 no.1
    • /
    • pp.32-40
    • /
    • 2010
  • The purpose of this study was to evaluate structural safety and economic efficiency of prestressed hybrid beam using T-shape steel member which was developed to build large span educational facilities. Hybrid beam specimens were manufactured with 16.0m long and load was uniformly distributed by 12.0kN steel hexahedrons. In this study, honeycomb beam design process was introduced to T-shape section steel beam design. Vibration condition of specimens were analyzed by Korea Building Code 2009 and AISC Steel Design Guide Series-11. As a result, the prestressed hybrid beam with T-shape steel member has about 10.4% of cost reduction effect.

A Study on the Heat Distribution and Welding Residual Stress of Hybrid Laser-MIG Weld by Numerical Simulation (수치해석을 이용한 하이브리드 용접부의 열분포 및 용접잔류응력 분포에 관한 연구)

  • O Jong In;Bang Han Seo;Kim Yeong Pyo;Lee Jin Uk
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.61-63
    • /
    • 2004
  • Recently many research works are going on in the field of application of Laser-Arc hybrid welding for superstructures such as shipstructures. However, the study on heat distribution and welding residual stress of hybrid weld by numerical simulation loaves much to be desired. Therefore in this study an optimized welding condition and numerical simulation for hybrid welding by using Previous numerical analysis which was used to calculate the kent source for hybrid welding has been analyzed.

  • PDF

A Study on CFD Data Compression Using Hybrid Supercompact Wavelets

  • Hyungmin Kang;Lee, Dongho;Lee, Dohyung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1784-1792
    • /
    • 2003
  • A hybrid method with supercompact multiwavelets is suggested as an efficient and practical method to compress CFD dataset. Supercompact multiwavelets provide various advantages such as compact support and orthogonality in CFD data compression. The compactness is a crucial condition for approximated representation of CFD data to avoid unnecessary interaction between remotely spaced data across various singularities such as shock and vortices. But the supercompact multiwavelet method has to fit the CFD grid size to a product of integer and power of two, m${\times}$2$^n$. To resolve this problem, the hybrid method with combination of 3, 2 and 1 dimensional version of wavelets is studied. With the hybrid method, any arbitrary size can be handled without any shrinkage or expansion of the original problem. The presented method allows high data compression ratio for fluid simulation data. Several numerical tests substantiate large data compression ratios for flow field simulation successfully.

A Study on the Analysis of the Shift Characteristics and the Driving Comfort for the Parallel Type hybrid Drivertrain System for Transit Bus equipped AMT (자동화 변속기를 장착한 버스용 병렬형 하이브리드 동력전달계의 변속 특성 해석과 승차감에 관한 연구)

  • 조한상;이장무;박영일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.136-148
    • /
    • 1999
  • Detailed mathematical models of hybrid drivertrain components are presented and numerical simulations are carried out to analyze the shift characteristics and to improve the driving comfortability when the hybrid drivetrain is applied at the vehicle . Theoretical results are compared with experimental ones from the dynamometer as same condition in order to prove the appropriateness of modeling . Adding the vehicle body modeling, included in the suspension and the engine mount, it is possible to predict the dynamic behavior and shift characteristics more actually when shifts are occurred by automated manual transmission(AMT). these additional results are also compared with the same simulation ones of internal combustion engined vehicle equipped conventional manual transmission. Hence, it can be expected that the hybrid vehicle with AMT has a good shift quality.

  • PDF

Comparative structural analysis of lattice hybrid and tubular wind turbine towers

  • Kumaravel, R.;Krishnamoorthy, A.
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • This paper presents a comparative structural analysis of lattice hybrid tower with six legs with conventional tubular steel tower for an onshore wind turbine using finite element method. Usually a lattice hybrid tower will have a conventional industry standard 'L' profile section for the lattice construction with four legs. In this work, the researcher attempted to identify and analyze the strength of six legged lattice hybrid tower designed with a special profile instead of four legged L profile. And to compare the structural benefits of special star profile with the conventional tubular tower. Using Ansys, a commercial FEM software, both static and dynamic structural analyses were performed. A simplified finite element model that represents the wind turbine tower was created using Shell elements. An ultimate load condition was applied to check the stress level of the tower in the static analysis. For the dynamic analysis, the frequency extraction was performed in order to obtain the natural frequencies of the tower.