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Abstract

Dynamic hybrid position/force controt of flexible ma-
nipulators is proposed. First, a 2 D.O.F. flexible manip-
ulator is modeled using the spring-mass model. Second,
the equation of motion considering the tip constraints is
derived. Third, hybrid position/force control algorithm is
derived. In this coutrol algorithm, the differentiable order
of the desired trajectory and the stability condition are
differeut from the case of rigid manipulators. Lastly, to
verify the ctfectiveness of the proposed control algorithm,

simnlation results are presented.

1 Introduction

I recent years, need for light-weight and high-mobility
structnres for industrial robots has developed.  For use
in space, loug arms are nceded that are light in compari-
son to their load. In snch arms, their elasticity demands
compensation of artn deformation and vibration.

Considering the task that these flexible manipnlators
have to perforin, not only the end poit position but also
the force that the end point exerts to an object should be
simnltancously controlled. Moreover, to control them fast
and precisely, the arm dynamics should be considered in
their control algorithm.

Many rescarches have been done on hybrid position/
force control of rigid manipulators so far{1,2,3]. However,
there are not so many researches controlling position and
force of flexible wanipulators. Matsuno and Yamamotof4]
proposed a dynamic hybrid control based on singular per-
turbation approach nsing the distrilmted parameters
model. Spong[5] or EIMaraghy et al.{6,7] proposed a dy-
uamic hybrid control of manipnlators with flexible joints.

Several methods have proposed in dynamic trajectory
tracking control of flexible manipntators[8,9,10.11}, These
results can be extended to hybrid control. Hosoda and
Yoshikawa modeled flexible links using a simple spring-

mass model[12]. and the trajectory tracking controller is

constructed([11].

In this paper, a method for dynatic hybrid control of
{lexible manipulators is proposed. We maodel the flexible
manipulator by nsing the spring-mass model. This model
is simple enough to be suitable for the real-time control.
First, the equation of motion is derived cousidering the
force that the end point exerts on an object. Seccond,
dynamic hybrid control algorithm is constructed. In this
approach, the differentiable ovder of the desired trajectory
is different from the case of rigid manipulators. There
exists the zero-dynamics[10] in this system. The stability
condition depends on this dynamics. Lastly, to verify the
effectiveness of the proposed control algorithm, simulation

results are presented.

2 Modeling

In this section, a 2 D.Q.F. flexible manipulator is mod-
cled. Fig.l shows an overview of the manipulator userl
in this rescarch. This fexible manipulator has two links
which are driven by the motors in each joint. These links
are very flexible. An end effector and a force sensor are
attached at the tip of this manipulator. The weight of
the links are cousidered to be light in comparison to that
of the motors or the end effector.  As shown in Fig.l,
7:{i = 1,2) is the position vector of the tip of link 7 with
respect to the inertial coordinate system Lg. ny(2 = 1,2)
is the mass at the tip of link 7. {;( = 1.2} is the length
of link 7. The deformation and the angnlar deformation
of the tip of link 7 are denoted as & and ¢;. respectively.
0:(+ = 1,2) is the joint displacement of joint 1.

We make a following assiunptions to make a model of

this arm:

i. Each flexible link is slender, hoinogeneous and can

be regarded to be simple beams.

2. The mass of each link is light enough to be negligible

in comparison to Inmped mass at the tip of the link.
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3. Friction of motors and joints are assumed to be neg-
ligible.

Under these assumptions, we use the spring-mass model
shown in Fig.2, in which cach flexible link is modeled by
using a spring system and a rigid body attached at the
tip of the mass-less link.

In this model, we add the following assumption to sim-
plify:

4. The beam does not deform longitudinally.

Under these asswinptions, the position vectors of link 1

are given by

7y =ULb + §iay, (1)
ry =17 +laby + bra,, (2)
where
a; = [—siuf cus€|]7v, by = [cos b, sinﬂl]r,
az = [—sin(8) + 02+ ¢1) cos(6) + 2 + rﬁl)]T.

by = [cos(f) + 82+ 1) sin(f) + 8 + )T .
(3)

Adopting this inodel to the 2 D.O.F flexible manipulator
the relation between the force fi, moment n;, elastic dis-

placement & and angnlar elastic displacement ¢; is given

by
fil _{ Kin Ki 6
e sl

where K. Kie aud K;q are spring constants.

Fig.1 2 D.O.F. Flexible Manipulator

We derive the kinctic and potential encrgy of the ma-
nipnlator. The total kinetic energy consists of that of

lumped masses and rotational energy of motors such as

1 1 1 . .
E. = 57”17‘{7'1 + —2-11127'451'2 + -2-11(191 +¢1)2
1. . . . C a1 -
+3 000+ 0+ ¢y + o) + EIHII(Nlol)
1 . . P
+5LnalB1 + b1+ Nab)?, (5)
where I,;( = 1,2) is the rotational inertia of the ith

motor, and Ni(z = 1,2) is the reduction ratio. % shows the

differentiation with respect to time. The total potentiai

energy is composed of that of elasticity in each link such

E _1[61 " K K ][ 6
T2l h Ki. K| #

T
1 6 Koy K [
+2[¢z] [K%; u”«] ©

Using the Lagrange's method, the equation of motion con-

as

sidering the force that the end point exerts on an object

is derived as
M(z)& + h(z, &)+ Kz =Dr — J(«)'F, (7)

where & = [0; 0, 8| 63 $1 2] is the vector of generalized
coordinates, 7 is the vector of joint driving force, M (x) is
the inertia matrix, h(z, &) is the vector of centrifugal and
Coriolis force, K is the stiffness matrix, The matrix D has
a 22 unity matrix in upper side and a 4 x 2 zero matrix in
lower side, J(z) is the jacobian matrix of & with respect
to rg, F is the 2 dimensional force vector that is exerted
by the end cffector. This equation of motion is simple and

considered to be suitable for the real-time control.

Fig.2 Spring-mass Model

3 Hybrid Position/Force Control

Using the equation of motion derived in the previous
section, a hybrid position/foree control algorithm is con-
strncted in this seckion. Different from the case of rigid
manipulators, it is not casy in flexible manipulators to ob-
tain the joint displacements from the corresponding end
point. displacements and force (inverse kinematics prob-
lem), aud to obtain the joint driving force (inverse dy-
namics problem). In the case of flexible manipulators,
some special transformations are neceded to construct a
hybrid control algorithun.

First, we describe the kinematic equations. The end
point position r3 is derived by using eq.(2). This equation

is differentiated with respect to time as follows:
iy = J (@), ®
#o = J(®)E + J(z)d. )]

Avguments will be omitted in the following when no con-
fusion occurs. The relation between the end point accel-
cration and the joint driving force is derived nsing eqs.(7)
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and (9) as follows:
#y= IM™ (DT = J"F - Ko —h)+ Ji.  (10)

In this equation, if JM ™D is nonsingular, we can eas-
ily obtain a desived joint driving force from the desived
cnd point aceeleration and the desired force. However, as
vk JAM D = using Lhe spring-mass model, we can-
not directly obtain the joint driving force from eq.(10).

So some approximations are used in ecq.(10) ns

5. Elastic displacements are siall, so the terms which
inclnde & or ¢i(7 = 1,2) are negligible except for

the stiflness term.

6. Centrifugal and Coriolis force is small enough to be

neglocted.

Using the spring-mass model, the first term in the vight-
hand side of eq.(10), JM ' D, becomes a first order small
term with vespect to elastic displacements. Using thesc
approximations, JM ™1 becomes 0. So eq.(10) is rewrit-

ten as [ollows:

IR

Ty

—JIM! (J"'F + Km)

1>

JpF -+ Jpx. (11)

In eq.(11), there does not exist the teru including the
joint driving force 7. To get the desired joint driving
force, the differentiation of eq.(11) is repeated and the
eq.(7} is substituted unlil the coellicient of 7 hecoes

nonzero. Eq.(11) is differentiated with respect to time as

N Jpe+Jpe+ JpF+ JpF

It

e

Eq.(12) is differenliated again as follows:
v = Jpa+ JpF 4, {13)
where v} is defined by
vy = jp:i: + J,F (1)

To constimet the hybrid controller, the equation of motion

(7) is substituted into eq.(13) such as
P = JM! (D-r B 0 Km) + JpF 4. (15)

Approximations 5 and 6 are also considered in this cqua-
tion. In ca.(15), the coetticient matrix of 7, JpM ™' D,
is nonsingular unless the manipulator is at singular con-

figurations. Solving eq.(15) with respect to 7, we obtain

v = (JpM Dy — gk
+JpM~YJ'F + Kz)— v} (16)

Jpa+ JeF. (12)

Usiug this equation, dynamic hybrid position/force con-

troller is derived as

~'
I

(oM D)y ) — Ty
+IpM Y J"F 4+ Kz) —))

2 e, (17)

) = B! ([ 'é)’ ] - 3Er — 37,

- E‘“’ig) . (18)

F,,zEr([ 0 }#E"'Fhm"ﬁ). an
e

Here, wp and up ;u‘n‘now input vectors controlling the
position and force, respectively. and E is the 2 x 2 matrix
given by

E=lepef]". (20)

We assime that a given end point constraint can be ex-
pressed by .
pira) =0, (21)

and we assume that there exists a scalar finction s(ry)
and {p(rq) s(ra)} are mutnally independent. ep and ep
are defined by

_ Op(r2) _ 0Os(ry)

o= F, €p = T 22
er 07'& r 07‘% ( )

Then, if the generalized coordinate of the position control
direction, yp, and the generalized force of the force control
direction, fp, are given, substitufing eq.(17) into eq.(16),

the closed loop becomes linear described by

)

; .
yi =, fr=up. (23)

A variety of control laws of servo compensators are ap-
plicable.  We use the following servo controller for the

lincarized systemu

4 g ; 3 . ,

up = U(p,; + K m(y(,?,; - '.‘I(p)) + Kpaliipd — iir)
+Kpo(gpa—9r) + Kpplypa ~ yp),

up = fra+ Kpolfra— )+ Kep(fra — fr).(24)

The 4th order position controller and the 2nd order force
controfler are used. Here, ypg and fpg arc the desired val-
ues of yp and fp, vespectively. Kpg, Kpa. Kpeo Kpp, Ko
and K, are feedback gains.

Using the spring-mass model, hybrid position/force
controller needs the desired end point trajectory to be
differentiable 4 times and the desived force trajectory to
be differentiable twice. This is different from the case of
vigid manipulators since a hybrid controller for rigid ma-
nipulators needs the desived end point trajectory to be
differentiable twice and the desired foree to be differen-

tiable 0 time.
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4 Zero-Dynamics

In this section, zero-dynamics in the hybrid controller
derived in the previous section are derived. First, we de-
rive a state equation from the equation of motion. Using

1|

[ml T as state variables, the state eqnation is described

as follows:

HE SRR
& -M~'(J'F + K=) M-'D
(25)

In the case of hybrid control, though the ovder of the
state equation is considered to be rednced due to the con-
straint conditions[3], we analyze the stability conditions
using q.(25) which represents the configuration that the
external force is exerted by the end effector.

We consider the transformations in the previous section
as the change of coordinates and the input transforma-
tion. Baqs.(8),(9),(12) and (13) are used for this change of

coordinates such as

Ty J o o

7y J J . o

7'!23) =|Jpr o [ :r ] + JrF

r.(;) .:Ip jp ® JIF + JFF
z T,[ T~2 o

(26)
In this equation, the state variables arc differentiated
once. This is because the following transformations will
became simple by using this equation. The new state
variable z is set such that the transformation matrix in
eq.(26) becomes nonsingular. T} and Ty are the transfor-
mation matrices between 2 and @, . In our case, T is a
6 dimensional vector that consists of 8y, 84,8, 8, ¢ and
¢2, and 7 is a 2 dimensional vector. So z becones a 4
dimensional vector. Substituting eq.(26) into eq.(25) and
using «q.(17) as an input transformation, we can derive

the state equation replaced by a new description

. P
7 oI oo0oo 1.'2
L) _|o oI oo ;‘z
r;‘” "o oo I o (:z‘)
(4) T2
Ty 0 0 0 0 O
z
(1]
o
+ o (27)
4 . .
roi = Jp(Fy = F)
t=T&+TyM YD - J'F - Kuz). (28)

Here, eq.(27) is a state equation of the end point r.

Eq.(28) is that of the new variable 2. I is a 2 x 2 unity
matrix. In these new state cquations, eq.(27) is linear.
Eq.(27) shows that the end point position and force con-
verge to their desired values if the position control dirce-

tion and the force control dircction are decoupled with

respect to the constraint frame. However, eq.(28) nceds
to pay attention. As the state variables are differentiated
once in eq.(26), eq.(28) is not changed of coordinates com-
pletely such that

z=g(z, &, u). (29)
Eq.{29) is changed of coordinates again as follows:
. L@
—9(7'217'2~7'2',r2 wziu)- (30)

As z is not included iu eq.(27), z cannot be observed by

L 3
Ty, T9,¥9 and .

Eq.(30) is a dynamics that is not
directly controlled by a servo controller,u, in which only
the information of the end point poesition and force are
used. Morcover, the stability condition depends on the
stability of this dynmnics. This dynamics is called zero-

dynamics in hybrid control of flexible manipulators[10].

5 Simulation Results

In this section, to verify the effectiveness of the pro-
posed control algorithu, simulation results are presented.

Parameters of the maiiipulator are shown in table 1. For
thie manipulator model, the si)ring-mass model are used.
In the simulation of hybrid control, the environment to
which the end effector is constrained have to be mod-
eled. The environment is modeled by a spring-damper
system in which the spring constant is 15000(N/m) and
the damping cocflicient is 2000( N sec/m). Constraint sur-
face is set as a plain y = —0.3(m). The overview of the
simulation is shown in Fig.3. The fecdback gains in the
servo compensators o.(24) are set as Kp, = 5 x 10',
Kpo = 5x10%, Kp, = 4 x10%, Kp, = 3 x 10°%,
Kpe = 2 x 10" and Kpy, =8x 10, The sampling pe-
riod is sct as 2msec

Smooth trajectories are used as the desired trajectories.
The desired end point trajectory is sct as differentiable 9
times, in which ypg = fipq = 1/‘,,2 = y‘,ﬁ = 0 at begiuning
and ending. The desived force is set as differentiable 6
times, in which fpq = frq = 0 at beginning and ending.
These are given by

t\? t\*?
= 1.2-015¢70{-) —315(=
fm(5) - ()
t\7’ £\° £\
L i 26 - 3
+ 54()<4) 420<4) +16(4) , (31
t\6 t\? t\*
fra = 10{_64(Z> +192 (Z) —192(2)

64 (3)1} . (32)

These trajectories are shown in Fig.4 and 5.
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Initial Point (0)
(x.y)=0.2,-0.3)

End Point
(x,y)=(1.05.-0.3

Fig.3 Simmlation

(m)

1.3

1.2}

1.05
1

0 2 4 (se0)

Fig.4 Desired End Point Trajectory

™)
10}

00 2 4 (sec)

Fig.5 Desired Force

First, we analyzc the stability of the zero-dynamics. We

adopt the following z:

z= [(ﬁl b 1 d’z][ (33)

Thcli. cq.{30) is regarded to be the linear time varying

system such as

2= Z(ro. F)Yro+ Zy(ry, F)z + Zy(ry, Flu
+Za(ro, F,F)  (39)

The poles of eq.(34) are shown in Fig.6 when we let the
manipulator precisely track the desired position and force.
It ciuy be seen from this figure that the poles exist around
+2007, £1607, and c.(34) is on the boundary of stability.
This is because the daunping force is considered neither
the inverse dynamic model nor in the manipulator model

in the simulation,

Simulation results are shown in Fig.7-10. I'ig.7 and §

show the results of the proposed method. Fig.9 and 10

200 3

X

2 :
] oo

&

-200 X

-0.04 0

Fig.6 Stability of the Zevo Dynamics

show the comparative study in which the manipulator is
controlled using the hybrid control for rigid manipulators[2].

In the results of the proposed method, Fig.7 shows the
end point position error, and Fig.8 shows the force error.
Maximum position error is about 1 x 1074 (m). Maximum
force error is about 0.03(N) These are small enough to
show the cffectiveness of the proposed method.

In the results of the hybrid control for rigid manipw-
lators, Tig.9 shows the position error, and Fig.10 shows
the force ervor. In Fig 9, the tracking error is nuich larger
than that of the proposed method. In Fig.10, the error
18 as small as that of the proposed method. However,
watching carcfully, the ervor is found out to be smaller
than the casc of the proposed method. We consider that
this is becanse approximations 5 and 6 are used in our
proposed method. In Fig.9 and 10, a large oscillation is
caused. This shows that the stability is not preserved in

the hybrid control for rigic manipulators.

Table 1 Parameters of the Manipulator

{ [ hukl [ link2
leugth(m) 0.724 - 0725 |
diamcter{m) 0.013 0.008
mass of end tip(kg) 4.10 1.30
bending rigidity(N - m?) 288.8 41.4
inertia of end-tip(kg - m?) | 1.73 x107% | 2.22 x10~"

6 Conclusions

In this paper, dynamic hybrid position/force con-
trol of 2 D.O.F. fexible manipulators has been proposed.
First, the flexible manipulator is modeled by using the
spring-mass model. Second, a dynamic hybrid coutroller
is constructed. In this controller, the differentiable order
of the desired trajectory and the stability condition are
different from the case of rigid manipuators, Lastly, to
verify the effectiveness of the proposed control algorithm,
simulation results are presented. The experiment is con-

sidered to be our future topic.
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Fig.7 Position Error (Proposed Method)

(N)
0.06
TR
-0.06
0 2 4 (sec)

Fig.8 Force Error {Proposed Method)
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Fig.9 Position Error (Method for Rigid Manipulators)
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Fig.10 Force Error (Method for Rigid Manipualtors)
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