• Title/Summary/Keyword: Hurwitz zeta function

Search Result 49, Processing Time 0.022 seconds

Differential Subordination and Superordination Results associated with Srivastava-Attiya Integral Operator

  • Prajapat, Jugal Kishore;Mishra, Ambuj Kumar
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.2
    • /
    • pp.233-244
    • /
    • 2017
  • Differential subordination and superordination results associated with a generalized Hurwitz-Lerch Zeta function in the open unit disk are obtained by investigating appropriate classes of admissible functions. In particular some inequalities for generalized Hurwitz-Lerch Zeta function are obtained.

SYMMETRIC IDENTITIES INVOLVING THE MODIFIED (p, q)-HURWITZ EULER ZETA FUNCTION

  • KIM, A HYUN;AN, CHAE KYEONG;LEE, HUI YOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.5_6
    • /
    • pp.555-565
    • /
    • 2018
  • The main subject of this paper is to introduce the (p, q)-Euler polynomials and obtain several interesting symmetric properties of the modified (p, q)-Hurwitz Euler Zeta function with regard to (p, q) Euler polynomials. In order to get symmetric properties, we introduce the new (p, q)-analogue of Euler polynomials $E_{n,p,q}(x)$ and numbers $E_{n,p,q}$.

ASYMPTOTIC BEHAVIOR OF THE INVERSE OF TAILS OF HURWITZ ZETA FUNCTION

  • Lee, Ho-Hyeong;Park, Jong-Do
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1535-1549
    • /
    • 2020
  • This paper deals with the inverse of tails of Hurwitz zeta function. More precisely, for any positive integer s ≥ 2 and 0 ≤ a < 1, we give an algorithm for finding a simple form of fs,a(n) such that $$\lim_{n{\rightarrow}{\infty}}\{\({\sum\limits_{k=n}^{\infty}}{\frac{1}{(k+a)^s}}\)^{-1}-f_{s,a}(n)\}=0$$. We show that fs,a(n) is a polynomial in n-a of order s-1. All coefficients of fs,a(n) are represented in terms of Bernoulli numbers.

SOME RELATIONS BETWEEN ζ(2n + 1) AND ζ(2n + 1, α) FOR SPECIAL VALUES OF α

  • Lim, Sung-Geun
    • Honam Mathematical Journal
    • /
    • v.39 no.4
    • /
    • pp.561-568
    • /
    • 2017
  • Hurwitz zeta function occurs in various parts of mathematics. In particular, it plays an important role in some area of number theory. In this paper, using a certain transformation formula, we find some identities of relations between ${\zeta}(2n+1)$ and ${\zeta}(2n+1,{\alpha})$ for special values of ${\alpha}$.

NOTE ON THE MULTIPLE GAMMA FUNCTIONS

  • Ok, Bo-Myoung;Seo, Tae-Young
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.219-224
    • /
    • 2002
  • Recently the theory of the multiple Gamma functions, which were studied by Barnes and others a century ago, has been revived in the study of determinants of Laplacians. Here we are aiming at evaluating the values of the multiple Gamma functions ${\Gamma}_n(\frac{1}{2})$ in terms of the Hurwitz or Riemann Zeta functions.

  • PDF

NEW CLASS OF INTEGRALS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTION AND THE LOGARITHMIC FUNCTION

  • Kim, Yongsup
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.329-342
    • /
    • 2016
  • Motivated essentially by Brychkov's work [1], we evaluate some new integrals involving hypergeometric function and the logarithmic function (including those obtained by Brychkov[1], Choi and Rathie [3]), which are expressed explicitly in terms of Gamma, Psi and Hurwitz zeta functions suitable for numerical computations.

MULTIPLICATION FORMULA AND (w, q)-ALTERNATING POWER SUMS OF TWISTED q-EULER POLYNOMIALS OF THE SECOND KIND

  • CHOI, JI EUN;KIM, AHYUN
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.455-467
    • /
    • 2021
  • In this paper, we define twisted q-Euler polynomials of the second kind and explore some properties. We find generating function of twisted q-Euler polynomials of the second kind. Also, we investigate twisted q-Raabe's multiplication formula and (w, q)-alternating power sums of twisted q-Euler polynomials of the second kind. At the end, we define twisted q-Hurwitz's type Euler zeta function of the second kind.

BI-UNIVALENT FUNCTIONS OF COMPLEX ORDER BASED ON SUBORDINATE CONDITIONS INVOLVING HURWITZ-LERCH ZETA FUNCTION

  • Murugusundaramoorthy, G.;Janani, T.;Cho, Nak Eun
    • East Asian mathematical journal
    • /
    • v.32 no.1
    • /
    • pp.47-59
    • /
    • 2016
  • The purpose of the present paper is to introduce and investigate two new subclasses of bi-univalent functions of complex order defined in the open unit disk, which are associated with Hurwitz-Lerch zeta function and satisfying subordinate conditions. Furthermore, we find estimates on the Taylor-Maclaurin coefficients ${\mid}a_2{\mid}$ and ${\mid}a_3{\mid}$ for functions in the new subclasses. Several (known or new) consequences of the results are also pointed out.

THE ZETA-DETERMINANTS OF HARMONIC OSCILLATORS ON R2

  • Kim, Kyounghwa
    • Korean Journal of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.129-147
    • /
    • 2011
  • In this paper we discuss the zeta-determinants of harmonic oscillators having general quadratic potentials defined on $\mathbb{R}^2$. By using change of variables we reduce the harmonic oscillators having general quadratic potentials to the standard harmonic oscillators and compute their spectra and eigenfunctions. We then discuss their zeta functions and zeta-determinants. In some special cases we compute the zeta-determinants of harmonic oscillators concretely by using the Riemann zeta function, Hurwitz zeta function and Gamma function.