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Abstract. Differential subordination and superordination results associated with a gen-

eralized Hurwitz-Lerch Zeta function in the open unit disk are obtained by investigating

appropriate classes of admissible functions. In particular some inequalities for generalized

Hurwitz-Lerch Zeta function are obtained.

1. Introduction

Let H denote the class of analytic functions in the open unit disk D = {z ∈ C :
|z| < 1} and S be the subclass of H consisting of functions which are univalent in
D. For a ∈ C and n ∈ N consider

H[a, n] = {f ∈ H : f(z) = a+ anz
n + an+1z

n+1 + . . . , z ∈ D},

with H0 = H[0, 1] and H1 = H[1, 1]. We denote by A the class of the functions
H[a, 1] which are normalized by the condition f(0) = 0 = f ′(0) − 1 and have
representation of the form

(1.1) f(z) = z +

∞∑
n=2

anz
n, z ∈ D.

Given two functions f, g ∈ H, we say that f is subordinated to g or g is said to
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be superordinate to f , and write f(z) ≺ g(z), if there exists a function w analytic
in D with w(0) = 0 and |w(z)| < 1 for all z ∈ D, such that f(z) = g(w(z)). In
particular, if g is univalent in D, then f(z) ≺ g(z) if and only if f(0) = g(0) and
f(D) ⊂ g(D). We denote by Q the set of functions q that are analytic and injective
on D \ E(q), where

E(q) =

{
ζ ∈ ∂D : lim

z→ζ
q(z) = ∞

}
,

and are such that q′(ζ) ̸= 0 for ζ ∈ ∂D \ E(q). Further let the subclass of Q for
which q(0) = a be denoted by Qa, Q(0) ≡ Q0 and Q(1) ≡ Q1.

The general Hurwitz-Lerch Zeta function ϕ(z, s, a) is defined by [22, p. 21]

(1.2) ϕ(z, s, a) =
∞∑

n=0

zn

(a+ n)s
=

1

as
+

z

(1 + a)s
+

z2

(2 + a)s
+ . . . ,

where a ∈ C \ Z−
0 , s ∈ C when |z| < 1, and Re s > 1 when |z| = 1. The general

Hurwitz-Lerch Zeta function contains, as its special cases, well-known functions as
the Riemann and Hurwitz (or generalized) Zeta function, Lerch Zeta function, the
Polylogarithmic function and the Lipschitz-Lerch Zeta function. A generalization
of function ϕ(z, s, a) was studied by Lin and Srivastava [16] in the following form

(1.3) Φ(ρ,σ)
µ,ν (z, s, a) =

∞∑
n=0

(µ)ρn
(ν)ρn

zn

(n+ a)s
,

where µ ∈ C, ν, a ∈ C \ Z−
0 ;σ ∈ R+, ρ < σ; ρ = σ and s ∈ C when |z| = 1, and

ρ = σ and Re(s− µ+ ν) > 1 when |z| > 1.
An another generalization of the Hurwitz-Lerch Zeta function ϕ(z, s, a) was

studied by Garg et al. [11] in the following form

(1.4) Φλ,µ;ν(z, s, a) =
∞∑

n=0

(λ)n(µ)n
(ν)nn!

zn

(n+ a)s
,

where λ, µ, s ∈ C, ν, a ∈ C \ Z−
0 when |z| < 1, and Re(s + ν − λ − µ) > 1 when

|z| = 1. Here (α)k is the Pochhammer symbol defined by, (α)0 = 1, (α)k =
α(α + 1) . . . (α+ k − 1), (k ∈ N). Note that for λ = ν and µ = 1, then (1.4) yields
the general Hurwitz-Lerch Zeta function ϕ(z, s, a) defined by (1.2) and for λ = ν,
we find that (1.4) reduces to the function ϕ∗µ(z, s, a) studied by Goyal and Laddha
[12] (see also [13]). The generalized Hurwitz Lerch Zeta function Φλ,µ;ν(z, s, a) has
further been generalized by Srivastava et al. [26]. One may refer to monographs
by Srivastava and Choi [22, 25] for further details and recent developments on zeta
and q-zeta functions.

Recently, Prajapat and Bulboaca [20] introduced a linear operator Js,aλ,µ;ν , which
is defined by means of following Hadamard (or convolution) product

(1.5) J
s,a
λ,µ;ν(f)(z) = G

s,a
λ,µ;ν(z) ∗ f(z), z ∈ D,
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where λ, µ, s ∈ C, ν, a ∈ C \ Z−
0 and f ∈ A, while the function G

s,a
λ,µ;ν is defined by

G
s,a
λ,µ;ν(z) =

ν(1 + a)s

λµ

[
Φλ,µ;ν(z, s, a)− a−s

]
(1.6)

= z +
∞∑

n=2

(λ+ 1)n−1(µ+ 1)n−1

(ν + 1)n−1 n!

(
1 + a

n+ a

)s

zn, z ∈ D.

Now, by using (1.6) in (1.5), we get

(1.7) J
s,a
λ,µ;νf(z) = z +

∞∑
n=2

(λ+ 1)n−1(µ+ 1)n−1

(ν + 1)n−1 n!

(
1 + a

n+ a

)s

anz
n, z ∈ D.

Note that, the operator J
s,a
λ,µ;ν is well-defined for λ, µ, s ∈ C and ν, a ∈ C \ Z−.

Also, the operator Js,aλ,µ;ν generalize several familiar operators studied by Noor and
Bukhari [19], Choi et al. [8], Wang et al. [27], Srivastava and Attiya [23], Cho
and Srivastava [7], Jung et al. [14], Bernardi [5], Carlson and Shaffer [6], Dziok
and Srivastava [9, 10] and Srivastava [24]. Further, general families of convolution
operators such as Dziok-Srivastava operator [9] and Srivastava-Wright operator [24]
can be obtained from the operator J

s,a
λ,µ;ν with the use of convolution of analytic

functions.

It is readily verified from (1.7) that

(1.8) z
(
J
s+1,a
λ,µ;ν f(z)

)′
= (a+ 1)Js,aλ,µ;νf(z)− aJs+1,a

λ,µ;ν f(z),

(1.9) z
(
J
s,a
λ,µ;νf(z)

)′
= (λ+ 1)Js,aλ+1,µ;νf(z)− λJs,aλ,µ;νf(z),

(1.10) z
(
J
s,a
λ,µ;ν+1f(z)

)′
= (ν + 1)Js,aλ,µ;νf(z)− νJs,aλ,µ;ν+1f(z).

Let Ω and ∆ be any set in C, let p be an analytic function in D with p(0) = 1
and let ψ(r, s, t; z) : C3 × D → C. Miller and Mocanu [17] studied implications of
the form

(1.11)
{
ψ(p(z), zp′(z), z2p′′(z); z) : z ∈ D

}
⊂ Ω =⇒ p(D) ⊂ ∆.

If ∆ is a simply connected domain containing the point a and ∆ ̸= C, then the
Riemann mapping theorem ensures that there is a conformal mapping q of D onto
∆ such that q(0) = a. In this case (1.11) can be rewritten as

(1.12)
{
ψ(p(z), zp′(z), z2p′′(z); z) : z ∈ D

}
⊂ Ω =⇒ p(z) ≺ q(z).
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Further, if Ω is a simply connected domain and Ω ̸= C, then there is a conformal
mapping h of D onto Ω such that h(0) = ψ(a, 0, 0; 0). If in addition, the function
ψ(p(z), zp′(z), z2p′′(z); z) is analytic in D, then (1.12) can be rewritten as

(1.13) ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z) =⇒ p(z) ≺ q(z).

To prove our main results, we need the following definitions and lemmas.

Definition 1.1.([17, Definition 2.3a, p. 27]) Let Ω be a set in C, q ∈ Q and n
be a positive integer. The class of admissible functions Ψn[Ω, q] consists of those
functions ψ : C3 × D → C that satisfy the admissibility condition ψ(r, s, t; z) /∈ Ω,
whenever

r = q(ζ), s = kζq′(ζ) and ℜ
(
t

s
+ 1

)
≥ kℜ

(
ζq′′(ζ)

q′(ζ)
+ 1

)
for z ∈ D, ζ ∈ ∂D\E(q) and k ≥ n. In particular, Ψ1[Ω, q] ≡ Ψ[Ω, q].

Definition 1.2.([18, Definition 3, p. 817]) Let Ω be a set in C and q ∈ H[a, n]
with q′(z) ̸= 0. The class of admissible functions Ψ′

n[Ω, q] consists of those function
ψ : C3 × D → C that satisfy the admissibility condition ψ(r, s, t; ζ) ∈ Ω, whenever

r = q(z), s =
zq′(z)

m
and ℜ

(
t

s
+ 1

)
≤ 1

m
ℜ
(
zq′′(z)

q′(z)
+ 1

)
,

for z ∈ D, ζ ∈ ∂D\E(q) and m ≥ n ≥ 1. In particular, Ψ′
1[Ω, q] ≡ Ψ′[Ω, q].

Lemma 1.1.([17, Definition 2.3b, p. 28]) Let ψ ∈ Ψn[Ω, q] with q(0) = a. If
p ∈ H[a, n] satisfies

ψ
(
p(z), zp′(z), z2p′′(z); z

)
∈ Ω,

then p(z) ≺ q(z).

Lemma 1.2.([18, Theorem 1, p. 887]) Let ψ ∈ Ψ′
n[Ω, q] with q(0) = a. If p ∈ Qa

and ψ
(
p(z), zp′(z), z2p′′(z); z

)
is univalent in D, then

Ω ⊂
{
ψ
(
p(z), zp′(z), z2p′′(z); z

)
: z ∈ D

}
implies q(z) ≺ p(z).

In this article, for suitable defined classes of admissible functions, involving the
operator J

s,a
λ,µ;ν , we study the implications of the form (1.12)–(1.13). Through the

simple algebraic check of admissible functions, we get various subordination, su-
perordination and differential inequalities that would be difficult to obtain directly.
Aghalary et al. [1], Ali et al. [2, 3], Baricz et al. [4], Kim and Srivastava [15], Xiang
et al. [28] and Soni et al. [21] have considered similar problem.
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2. Subordination Results

We define the following class of admissible functions that will be required in our
first result.

Definition 2.1. Let Ω be a set in C and q ∈ Q1. The class of admissible functions
Φ(Ω, q) consists of functions ϕ : C3×D → C that satisfy the admissibility condition
ϕ(u, v, w; z) /∈ Ω, whenever u = q(ζ), v = (aq(ζ) + kζq′(ζ))/(a+ 1) and

ℜ
( (a+ 1)2w − a2u

(a+ 1)v − au
− 2a

)
≥ kℜ

(ζq′′(ζ)
q′(ζ)

+ 1
)
,

for z ∈ D, ζ ∈ ∂D\E(q), k ≥ 1.

Theorem 2.1. Let ϕ ∈ Φ(Ω, q). If f ∈ A satisfies

(2.1)
{
ϕ
(
Js+2,a
λ,µ,ν f(z), J

s+1,a
λ,µ,ν f(z), J

s,a
λ,µ,νf(z); z

)
: z ∈ D

}
⊂ Ω,

then Js+2,a
λ,µ,ν f(z) ≺ q(z), z ∈ D.

Proof. Define the analytic function p in D by

(2.2) p(z) = Js+2,a
λ,µ,ν f(z)

and assume that p ̸≺ q. Differentiating (2.2) with respect to z and using (1.8), we
get

(2.3) Js+1,a
λ,µ,ν f(z) =

zp′(z) + ap(z)

a+ 1

and

(2.4) Js,a
λ,µ,νf(z) =

z2p′′(z) + (1 + 2a)zp′(z) + a2p(z)

(a+ 1)2
.

Define the transformation from C3 to C by

(2.5) u = r, v =
s+ ar

a+ 1
and w =

t+ (1 + 2a)s+ a2r

(a+ 1)2
.

where r = p(z), s = zp′(z), t = z2p′′(z). Let

ψ(r, s, t; z) = ϕ(u, v, w; z)(2.6)

= ϕ
(
r,
s+ ar

a+ 1
,
t+ (1 + 2a)s+ a2r

(a+ 1)2
; z
)
,

using (2.2)–(2.4) in (2.6), we get

(2.7) ψ
(
p(z), zp′(z), z2p′′(z); z

)
= ϕ

(
Js+2,a
λ,µ,ν f(z), J

s+1,a
λ,µ,ν f(z), J

s,a
λ,µ,νf(z); z

)
.
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Hence (1) becomes ψ
(
p(z), zp′(z), z2p′′(z); z

)
∈ Ω. To complete the proof, we need

to show that the admissibility condition for ϕ ∈ Φ(Ω, q) is equivalent to the ad-
missibility condition for ψ as given in Definition 2.1. In view of (2.5), we note
that

t

s
+ 1 =

(a+ 1)2w − a2u

(a+ 1)v − au
− 2a,

then

ℜ
(
(a+ 1)2w − a2u

(a+ 1)v − au
− 2a

)
= ℜ

(
t

s
+ 1

)
≥ kℜ

(
ζq′′(ζ)

q′(ζ)
+ 1

)
, z ∈ D, ζ ∈ ∂D\E(q).

By Lemma 1.1, we have ψ
(
p(z), zp′(z), z2p′′(z); z

)
/∈ Ω, which contradicts (2.1).

Thus we must have p(z) ≺ q(z). This completes the proof of Theorem 2.1. 2

If Ω ̸= C is a simply connected domain, then Ω = h(D) for some conformal
mapping h of D onto Ω. In this case, the class Φ(h(D), q) is written as Φ(h, q). The
following result is an immediate consequence of Theorem 2.1.

Theorem 2.2. Let ϕ ∈ Φ(h, q) with q(0) = 1. If f ∈ A satisfies

(2.8) ϕ
(
Js+2,a
λ,µ,ν f(z), J

s+1,a
λ,µ,ν f(z), J

s,a
λ,µ,νf(z); z

)
≺ h(z), z ∈ D,

then Js+2,a
λ,µ,ν f(z) ≺ q(z).

Our next result is an extension of Theorem 2.1 to the case when the behaviour
of q on ∂D is not known.

Corollary 2.1. Let Ω ⊂ C and q is univalent in D with q(0) = 1. Let ϕ ∈ Φ(Ω, qρ),
where qρ(z) = q(ρz), 0 < ρ < 1. If f ∈ A satisfies

(2.9) ϕ
(
Js+2,a
λ,µ,ν f(z), J

s+1,a
λ,µ,ν f(z), J

s,a
λ,µ,νf(z); z

)
∈ Ω

then Js+2,a
λ,µ,ν f(z) ≺ q(z).

Proof. Theorem 2.1 yields that under the hypothesis Js+2,a
λ,µ,ν f(z) ≺ qρ(z), 0 < ρ < 1.

Since q is univalent in D, then by definition qρ(z) ≺ q(z). Hence the result. 2

Theorem 2.3. Let h, q ∈ S with q(0) = 1. Also set qρ(z) = q(ρz) and hρ(z) =
h(ρz), where 0 < ρ < 1. Suppose that ϕ : C3 ×D → C satisfies one of the following
conditions:

(i) ϕ ∈ Φ(h, qρ), or

(ii) there exist ρ0 ∈ (0, 1) such that ϕ ∈ Φ(hρ, qρ) for all ρ ∈ (ρ0, 1).

If f ∈ A and satisfying (2.9), then Js+2,a
λ,µ,ν f(z) ≺ q(z).

Proof. From Corollary 2.1, we have Js+2,a
λ,µ,ν f(z) ≺ qρ(z). Since qρ(z) ≺ q(z), hence
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we deduce that Js+2,a
λ,µ,ν f(z) ≺ q(z). Further, if we let Js+2,a

λ,µ,ν fρ(z) = Js+2,a
λ,µ,ν f(ρz),

then

ϕ
(
Js+2,a
λ,µ,ν fρ(z), J

s+1,a
λ,µ,ν fρ(z), J

s,a
λ,µ,νfρ(z); z

)
= ϕ

(
Js+2,a
λ,µ,ν f(ρz), J

s+1,a
λ,µ,ν f(ρz), J

s,a
λ,µ,νf(ρz); ρz

)
∈ hρ(D).

It is easy to see that Theorem 2.1 holds, if condition (1) is replaced by

(2.10) ϕ
(
Js+2,a
λ,µ,ν f(w(z)), J

s+1,a
λ,µ,ν f(w(z)), J

s,a
λ,µ,νf(w(z)); w(z)

)
∈ Ω,

where w is a mapping from D to D. If we take w(z) = ρz, 0 < ρ < 1, in (2.10), then
we obtain

Js+2,a
λ,µ,ν fρ(z) ≺ qρ(z), ρ ∈ (0, 1).

Now by leting ρ→ 1−, we obtain that Js+2,a
λ,µ,ν f(z) ≺ q(z). This completes the proof

of theorem. 2

The next theorem yields the best dominant of the differential subordination.

Theorem 2.4. Let h ∈ S. Suppose that ϕ : C3 × D → C and the differential
equation

(2.11) ϕ
(
q(z),

zq′(z) + aq(z)

a+ 1
,
z2q′′(z) + (1 + 2a)zq′(z) + a2q(z)

(a+ 1)2
; z
)
= h(z)

has a solution q with q(0) = 1, which satisfies one of the following conditions:

(i) q ∈ Q1 and ϕ ∈ Φ(h, q),

(ii) q ∈ S and ϕ ∈ Φ(h, qρ), for some ρ ∈ (0, 1), or

(iii) q ∈ S and there exist ρ0 ∈ (0, 1) such that ϕ ∈ Φ(hρ, qρ) for all ρ ∈ (ρ0, 1).

If f ∈ A satisfies (2.8), then Js+2,a
λ,µ,ν f(z) ≺ q(z), and q is the best dominant.

Proof. By applying Theorem 2.2 and Theorem 2.3, we deduce that q(z) is a dom-
inant of (2.8). Since q satisfies (2.11), it is also a solution of (2.8) and therefore q
will be dominated by all dominants of (2.8). Hence q is the best dominant. 2

In the particular case q(z) = Mz, M > 0, and in view of Definition 2.1, the
class of admissible functions Φ(Ω, q) is denoted by Φ(Ω,M), as described below.

Definition 2.2. Let Ω be a set in C and M > 0. The class of admissible function
Φ(Ω,M) consists of those functions ϕ : C3 × D → C such that

(2.12) ϕ
(
Meiθ,

k + a

a+ 1
Meiθ,

L+ {a2 + (2a+ 1)k}Meiθ

(a+ 1)2
; z
)
/∈ Ω,

whenever z ∈ D, ℜ(Le−iθ) ≥Mk(k − 1), for all real θ, and k ≥ 1.
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Definition 2.3. Let Ω1 be a set in C and q ∈ Q1. Let Φ̃(Ω, q) denote the class of

admissible functions ϕ̃ : C3 × D → C that satisfy ϕ̃(u, v, w; z) /∈ Ω, whenever

u = q(ζ), v =
λq(ζ) + kζq′(ζ)

λ+ 1

and

ℜ
{
(λ+ 1)(λ+ 2)w − λ(λ+ 1)u

(λ+ 1)v − λu
− 2λ− 1

}
≥ kℜ

{
ζq′′(ζ)

q′(ζ)
+ 1

}
,

for z ∈ D, ζ ∈ ∂D\E(q), k ≥ 1.

Theorem 2.5. Let ϕ̃ ∈ Φ̃(Ω, q) with q(0) = 1. If f ∈ A satisfies

(2.13) ϕ̃
(
Js,a
λ,µ,νf(z), J

s,a
λ+1,µ,νf(z), J

s,a
λ+2,µ,νf(z); z

)
∈ Ω, z ∈ D,

then Js,a
λ,µ,νf(z) ≺ q(z).

Proof. Define an analytic function by p(z) = Js,a
λ,µ,νf(z). Differentiating p(z) with

respect to z, using (1.9) and following similar steps as in proof of Theorem 2.1,
along with Definition 2.3, we get the desired result. 2

Theorem 2.6. Let ϕ̃ ∈ Φ̃(h, q) with q(0) = 1. If f ∈ A satisfies

ϕ̃
(
Js,a
λ,µ,νf(z), J

s,a
λ+1,µ,νf(z), J

s,a
λ+2,µ,νf(z); z

)
≺ h(z), z ∈ D,

then Js,a
λ,µ,νf(z) ≺ q(z).

Definition 2.4. Let Ω be a set in C and q ∈ Q1. The class of admissible functions
Θ(Ω, q) consists of functions ϕ : C3×D → C that satisfy the admissibility condition
ϕ(u, v, w; z) /∈ Ω, whenever

u = q(ζ), v =
k

(a+ 1)

ζq′(ζ)

q(ζ)
+ q(ζ) (q(ζ) ̸= 0)

and

ℜ
(
(a+ 1)

{
wv − u2

v − u
− 3u

})
≥ kℜ

(
1 +

ζq′′(ζ)

q′(ζ)

)
,

for z ∈ D, ζ ∈ ∂D\E(q) and k ≥ 1.

Theorem 2.7. Let ϕ ∈ Θ(Ω, q). If f ∈ A satisfies

(2.14)

{
ϕ

(
Js+2,a
λ,µ,ν f(z)

Js+3,a
λ,µ,ν f(z)

,
Js+1,a
λ,µ,ν f(z)

Js+2,a
λ,µ,ν f(z)

,
Js,a
λ,µ,νf(z)

Js+1,a
λ,µ,ν f(z)

; z

)
: z ∈ D

}
⊂ Ω,

then
Js+2,a
λ,µ,ν f(z)

Js+3,a
λ,µ,ν f(z)

≺ q(z).
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Proof. Define the analytic function

(2.15) p(z) =
Js+2,a
λ,µ,ν f(z)

Js+3,a
λ,µ,ν f(z)

and assume that p ̸≺ q. Differentiating (2.15) with respect to z and making use of
(1.9) and following similar steps as in proof of Theorem 2.1, along with Definition
2.4, we get the desired result. 2

3. Superordination Results

In this section we investigate differential superordination results. First, we
consider the following class of admissible function.

Definition 3.1. Let Ω be a set in C and q ∈ H1 with q′(z) ̸= 0. The class of
admissible functions Φ′(Ω, q) consists of functions ϕ : C3 × D → C that satisfy
ϕ(u, v, w; ζ) ∈ Ω, whenever

u = q(z), v =
zq′(z) +maq(z)

m(a+ 1)

and

ℜ
{
(a+ 1)2w − a2u

(a+ 1)v − au
− 2a

}
≤ 1

m
ℜ
{
zq′′(z)

q′(z)
+ 1

}
,

for z ∈ D, ζ ∈ ∂D and m ≥ 1.

Theorem 3.1. Let ϕ ∈ Φ′(Ω, q). If f ∈ A, Js+2,a
λ,µ,ν f(z) ∈ Q1 and

ϕ
(
Js+2,a
λ,µ,ν f(z), J

s+1,a
λ,µ,ν f(z), J

s,a
λ,µ,νf(z); z

)
is univalent in D, then

(3.1) Ω ∈ ϕ
(
Js+2,a
λ,µ,ν f(z), J

s+1,a
λ,µ,ν f(z), J

s,a
λ,µ,νf(z); z

)
, z ∈ D,

implies q(z) ≺ Js+2,a
λ,µ,ν f(z).

If Ω ̸= C is simply connected domain, then Ω = h(D) for some conformal
mapping h(z) of D onto Ω, and then the class Φ′(h(D), q) is written as Φ′(h, q).
Proceeding as in the previous section, the following result is an immediate conse-
quence of Theorem 3.1.

Theorem 3.2. Let q ∈ H1, h be univalent in D and ϕ ∈ Φ′(h, q). If f(z) ∈ A,
Js+2,a
λ,µ,ν f(z) ∈ Q1 and

ϕ
(
Js+2,a
λ,µ,ν f(z), J

s+1,a
λ,µ,ν f(z), J

s,a
λ,µ,νf(z) : z

)
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is univalent in D, then

(3.2) h(z) ≺ ϕ
(
Js+2,a
λ,µ,ν f(z), J

s+1,a
λ,µ,ν f(z), J

s,a
λ,µ,νf(z); z

)
implies that

q(z) ≺ Js+2,a
λ,µ,ν f(z).

The following theorems prove the existence of the best subordination of (3.1)
and (3.3) for an appropriate ϕ. The proof is similar of Theorem 2.4 and is therefore
omitted.

Theorem 3.3. Let h ∈ H1 and ϕ : C3 × D → C. Suppose that the differential
equation

ϕ
(
q(z),

zq′(z) + aq(z)

a+ 1
,
z2q′′(z) + (1 + 2a)zq′(z) + a2q(z)

(a+ 1)2
; z
)
= h(z)

has a solution q(z) ∈ Q1. If ϕ ∈ Φ′(h, q), f ∈ A, Js+2,a
λ,µ,ν f(z) ∈ Q1 and

ϕ
(
Js+2,a
λ,µ,ν f(z), J

s+1,a
λ,µ,ν f(z), J

s,a
λ,µ,νf(z); z

)
is univalent in D, then

h(z) ≺ ϕ
(
Js+2,a
λ,µ,ν f(z), J

s+1,a
λ,µ,ν f(z), J

s,a
λ,µ,νf(z); z

)
implies

q(z) ≺ Js+2,a
λ,µ,ν f(z),

and q is the best subordinant.

By combining Theorem 2.2 and Theorem 3.2, we obtain the following sandwich-
type theorem.

Corollary 3.1. Let h1, q1 ∈ H1, h2 is univalent in D. Suppose also that q2 ∈ Q1

with q1(0) = q2(0) = 1 and ϕ ∈ Φ(h2, q2) ∩ Φ′(h1, q1). If f(z) ∈ A, Js+2,a
λ,µ,ν f(z) ∈

H ∩ Q1 and

ϕ
(
Js+2,a
λ,µ,ν f(z), J

s+1,a
λ,µ,ν f(z), J

s,a
λ,µ,νf(z); z

)
is univalent in D, then

h1(z) ≺ ϕ
(
Js+2,a
λ,µ,ν f(z), J

s+1,a
λ,µ,ν f(z), J

s,a
λ,µ,νf(z); z

)
≺ h2(z),

implies
q1(z) ≺ Js+2,a

λ,µ,ν f(z) ≺ q2(z).
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Similarly, for well defined classes of admissible functions, we can establish dual
results of Theorem 2.5 and Theorem 2.7 and would obtain further sandwich type
results. These consideration can be fruitfully worked out and we skip the details in
this regards.
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