• Title/Summary/Keyword: Human Umbilical Vein Endothelial Cells

Search Result 243, Processing Time 0.027 seconds

Anti-oxidative and Anti-inflammatory Effect of Fractionated Extracts of Smilacis Glabrae Rhizoma in Human Umbilical Vein Endothelial Cell (혈관내피세포에서 토복령(土茯苓)의 항산화 및 항염증 효과)

  • Lee, Chang-Hyun;Yi, Hyo-Seung;Kim, Jae-Eun;Heo, Sook-Kyoung;Cha, Chang-Min;Won, Chan-Wook;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.24 no.3
    • /
    • pp.39-50
    • /
    • 2009
  • Objectives : Smilacis glabrae rhizoma (SG) has been traditionally used as a herbal medication of musculoskeletal disorders like arthritis, pain, convulsions, and syphilis in traditional Korean medicine. This study was investigated anti-oxidative and anti-inflammatory effect of fractionated extracts of Smilacis Glabrae Rhizoma in Human Umbilical Vein Endothelial Cell (HUVEC). Methods : SG extract prepared with methanol, and then fractionated with hexane, dichloromethane, ethylacetate, n-butanol and water. Inhibitory effect of SG onto free radical generation was determined by measuring DPPH, superoxide anions and nitric oxide scavenging activities in vitro. Cytotoxic activity of extracts on RAW 264.7 cells was measured using 5-(3-caroboxymethoxyphenyl)-2H-tetra-zolium inner salt (MTS) assay. Intracelluar oxidation was analysed by DCF-DA assay. The nitric oxide (NO) production was measured by Griess reagent system. The levels of ICAM-1 and VCAM-1 expression were confirmed by western blot. And proinflammatory cytokines were measured by ELISA kit. Results : Our results indicated that fractionated extracts, especially ethyl acetate (EA) extract, significantly inhibited free radical generation, the TNF-$\alpha$-induced intracellular oxidation. Furthermore, the EA extract protected TNF-$\alpha$-induced adhesion to THP-1, expression of adhesion molecules accompanied by an attenuation of IL-6 and IL-8 formation in HUVEC. Conclusions : These results indicate that EA extract of SG have potential as an agent of atherosclerosis and other chronic inflammatory diseases including diabetes, hypertension, and arthritis.

Protective effects of quality certified traditional Doenjang in Korea on TNF-α-induced vascular inflammation in human umbilical vein endothelial cells (혈관내피세포에서 TNF-α 자극에 의해 유도되는 혈관염증에 대한 전통식품 품질인증 된장의 효능 평가)

  • Kim, Eun-Ju;Jang, Yeon-Jeong;Kim, So-Young;Choi, Hye-Sun;Park, Shin-Young
    • Food Science and Preservation
    • /
    • v.23 no.3
    • /
    • pp.378-386
    • /
    • 2016
  • Anti-atherogenic effects in tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-stimulated human umbilical vein endothelial cells (HUVEC) are involved in the suppression of oxidative stress, cell adhesion molecules, and pro-inflammatory factors. This study investigated the vascular inflammation inhibitory activity of traditional Doenjang plays a key role in the pathogenesis and progression of atherosclerosis. The protective effects of Korean Deonjang was investigated on the expression of cell adhesion molecules (CAMs) in tumor necrosis factor (TNF)-${\alpha}$-induced human umbilical vascular endothelial cells (HUVECs). Deonjang extracts (20, 50, $100{\mu}g/mL$) decreased the expression of 20 ng/mL TNF-${\alpha}$-induced vascular cell adhesion molecule (VCAM)-1 intracellular adhesion molecule (ICAM)-1 proteins, and their corresponding mRNA levels. Nitric oxides (NO) produced by endothlial nitric oxides synthase (eNOS) dilated blood vessels, which had protective effects against platelet and leukocyte adhesion. While TNF-${\alpha}$-induced suppressed the production of nitric oxide in HUVECs, Doenjang restored NO production in HUVECs. In addition, Deonjang reduced the TNF-${\alpha}$-induced expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 mRNA levels. These results suggested that Doenjang can inhibited the production of cell adhesion molecules and inflammatory mediators, which could be a potential candidate for preventing atherosclerosis.

GRO-${\alpha}$, IL-8 and ENA-78 : Expressed by Stimulated Endothelial Cells and Increased PMN Adhesion (활성화된 내피세포에서 GRO-${\alpha}$, IL-8 및 ENA-78의 발현양상과 호중구 부착에 미치는 영향)

  • Ryu, Ki-Chan;Kim, Yun-Seong;Kim, Yong-Ki;Kim, In-Ju;Kim, Young-Dae;Lee, Chang-Hun;Park, Do-Youn;Kim, Ji-Yeon;Ha, Tae-Jeong;Lee, Min-Ki;Park, Soon-Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.2
    • /
    • pp.145-155
    • /
    • 2002
  • Background: Inflammation, where vascular endothelial cells are activated by cytokines, recruits circulating leukocytes such as neutrophils into the tissues. Mononuclear phagocytes as well as tissue cells activated by these stimuli produce these chemokines. In this study, thr effects of IL-1 and LPS on the expression of CXC chemokines such as GRO-${\alpha}$, IL-8 and ENA-78 in vascular endothelial cells and the neutrophil adhesion effects of ENA-78 and GRO-${\alpha}$ was investigated. Methods: Human umbilical vein endothelial cells were cultured and stimulated with various concentrations of IL-1 and LPS. The concentrations of the GRO-${\alpha}$, IL-8 and ENA-78 secreted were measured using enzymelinked immunosorbent assay. The effects of ENA-78 and GRO-${\alpha}$ on neutrophil adhesion to the endothelial cells were also investigated. Results: The addition of IL-1 and LPS to the vascular endothelial cells induced GRO-${\alpha}$ IL-8 and ENA-78 secretion in a time- and dose-dependent manner. The neutrophil adhesion was also increased by induction of ENA-78 and GRO-${\alpha}$ to the vascular endothelial cells in a dose-dependent manner. Conclusion: CXC chemokines such as GRO-${\alpha}$, IL-8 and ENA-78 secreted by the vascular endothelial cells play an important role in the acute inflammatory responses by stimulating neutrophil adhesion to the vascular endothelial cells, raising the possibility that the CXC chemokines are one of the targets in the clinical application of acute inflammation.

Isolation of Endothelial Cells and Smooth Muscle Cells from Rat Aort (흰쥐 대동맥의 내피세포와 민무늬근육세포 분리)

  • Yun, Young-Eun;Song, In-Hwan;Sung, Eon-Ki;Kim, Joo-Young
    • Journal of Yeungnam Medical Science
    • /
    • v.23 no.2
    • /
    • pp.182-192
    • /
    • 2006
  • Background: Atherosclerosis has emerged as the leading cause of death in developed countries. At present, human umbilical vein endothelial cells (HUVEC) are most commonly used for the investigation of Endothelial cells (EC). However, HUVEC are not found in arteries but only in veins. Currently there are many reports on methods used to isolate EC;, most of these methods require special equipment to remove contaminating smooth muscle cells (SMC). Materials and Methods: The method described here may be used to isolate not only ECs but also SMCs;,the approach presented here did not require special equipment. Rat aorta was treated with 2 mg/ml of type II collagenase solution for 45 minutes. The isolated cells from the aorta were incubated in medium G for a week;, only ECs could be separated. After the collagenase treatment, the rest of aorta was cut lengthwise, and left undisturbed to obtain SMCs in the culture dish for 10 days. To verify the purity of the isolated cells, we performed immunofluorescence and evaluated the results with transmission electron microscopy analysis. Results: The immunofluorescence study demonstrated specific expression of CD31 and ${\alpha}$-smooth muscle actin in the isolated ECs and SMCs, respectively. Cultured ECs and SMCs showed their own fine structure characteristics. Conclusion: These results suggest that this method for isolating ECs and SMCs may be especially useful for the study of atherosclerosis.

  • PDF

Anti-inflammatory Effect of Evodia Officinalis $D_{ODE}$ in Mouse Macrophage and Human Vascular Endotherial Cells (마우스 대식세포 및 사람 혈관 내피세포에서 오수유(Evodia officinalis $D_{ODE}$) 메탄올 추출물의 항염증 효과)

  • Yun, Hyun-Jeung;Heo, Sook-Kyoung;Lee, Young-Tae;Park, Won-Hwan;Park, Sun-Dong
    • The Korea Journal of Herbology
    • /
    • v.23 no.1
    • /
    • pp.29-38
    • /
    • 2008
  • Objectives : Evodia officinalis DODE (EO), an herbal plant, has been widely used in traditional Korean medicine for the treatment of vascular diseases such as hypertension. The crude extract of EO contains phenolic compounds that are effective in protecting liver microsomes, hepatocytes, and erythrocytes against oxidative damage. But EO has been little found to have an anti-inflammatory activity. We investigated anti-inflammatory activity of EO in RAW 264.7 cells and human umbilical vein endothelial cells (HUVECs). Methods : Cytotoxic activity of EO on RAW 264.7 cells was investigated by using 5-(3-caroboxymeth-oxyphenyl)-2H-tetra-zolium inner salt (MTS) assay. The nitric oxide (NO) production was measured by Griess reagent system. And proinflammatory cytokines were measured by ELISA kit. The levels of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expression were measured by flow cytometer. Results : EO decreased LPS-induced NO production in RAW 264.7 cells. The inhibitory activity of EO on LPS-induced NO release is probably associated with suppressing TNF-${\alpha}$, IL-6 and MCP-1 formation. These results indicate that EO has potential as an anti-inflammatory agent. Moreover, EO decreased TNF-${\alpha}$-induced IL-8, IL-6 production, and ICAM-1 and VCAM-1 expression in HUVECs. Conclusions : EO inhibits TNF-${\alpha}$-induced inflammation via decreasing cytokines production and adhesion molecules expression. These results indicate that EO has potential as an anti-inflammation and anti-artherosclerosis agent.

  • PDF

Nafamostat Mesilate: Can It Be Used as a Conduit Preserving Agent in Coronary Artery Bypass Surgery?

  • Yoon, Yoo Sang;Oh, Hyunkong;Kim, Yonghwan;Lim, Seung Pyung;Kim, Cuk-Seong;Kang, Min-Woong
    • Journal of Chest Surgery
    • /
    • v.46 no.6
    • /
    • pp.413-425
    • /
    • 2013
  • Background: Graft vessel preservation solution in coronary artery bypass surgery is used to maintain the graft conduit in optimal condition during the perioperative period. Nafamostat mesilate (NM) has anticoagulation and anti-inflammatory properties. Therefore, we investigated NM as a conduit preservative agent and compared it to papaverine. Methods: Sprague-Dawley (SD) rat thoracic aortas were examined for their contraction-relaxation ability using phenylephrine (PE) and acetylcholine (ACh) following preincubation with papaverine and NM in standard classical organ baths. Human umbilical vein endothelial cells (HUVECs) were cultured to check for the endothelial cell viability. Histopathological examination and terminal deoxynucleotidyl transferase dUTP nick end labeling assay were performed on the thoracic aortas of SD rats. Results: The anti-contraction effects of papaverine were superior to those of NM at PE (p<0.05). The relaxation effect of NM on ACh-induced vasodilatation was not statistically different from that of papaverine. Viability assays using HUVECs showed endothelial cell survival rates of >90% in various concentrations of both NM and papaverine. A histopathological study showed a protective effect against necrosis and apoptosis (p<0.05) in the NM group. Conclusion: NM exhibited good vascular relaxation and a reasonable anti-vasocontraction effect with a better cell protecting effect than papaverine; therefore, we concluded that NM is a good potential conduit preserving agent.

Arginase inhibition by rhaponticin increases L-arginine concentration that contributes to Ca2+-dependent eNOS activation

  • Koo, Bon-Hyeock;Lee, Jonghoon;Jin, Younghyun;Lim, Hyun Kyo;Ryoo, Sungwoo
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.516-521
    • /
    • 2021
  • Although arginase primarily participates in the last reaction of the urea cycle, we have previously demonstrated that arginase II is an important cytosolic calcium regulator through spermine production in a p32-dependent manner. Here, we demonstrated that rhaponticin (RPT) is a novel medicinal-plant arginase inhibitor and investigated its mechanism of action on Ca2+-dependent endothelial nitric oxide synthase (eNOS) activation. RPT was uncompetitively inhibited for both arginases I and II prepared from mouse liver and kidney. It also inhibited arginase activity in both aorta and human umbilical vein endothelial cells (HUVECs). Using both microscope and FACS analyses, RPT treatments induced increases in cytosolic Ca2+ levels using Fluo-4 AM as a calcium indicator. Increased cytosolic Ca2+ elicited the phosphorylations of both CaMKII and eNOS Ser1177 in a time-dependent manner. RPT incubations also increased intracellular L-arginine (L-Arg) levels and activated the CaMKII/AMPK/Akt/eNOS signaling cascade in HUVECs. Treatment of L-Arg and ABH, arginase inhibitor, increased intracellular Ca2+ concentrations and activated CaMKII-dependent eNOS activation in ECs of WT mice, but, the effects were not observed in ECs of inositol triphosphate receptor type 1 knockout (IP3R1-/-) mice. In the aortic endothelium of WT mice, RPT also augmented nitric oxide (NO) production and attenuated reactive oxygen species (ROS) generation. In a vascular tension assay using RPT-treated aortic tissue, cumulative vasorelaxant responses to acetylcholine (Ach) were enhanced, and phenylephrine (PE)-dependent vasoconstrictive responses were retarded, although sodium nitroprusside and KCl responses were not different. In this study, we present a novel mechanism for RPT, as an arginase inhibitor, to increase cytosolic Ca2+ concentration in a L-Arg-dependent manner and enhance endothelial function through eNOS activation.

Oxytocin-induced endothelial nitric oxide dependent vasorelaxation and ERK1/2-mediated vasoconstriction in the rat aorta

  • Xu, Qian;Zhuo, Kunping;Zhang, Xiaotian;Zhang, Yaoxia;Xue, Jiaojiao;Zhou, Ming-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.255-262
    • /
    • 2022
  • Oxytocin is a neuropeptide produced primarily in the hypothalamus and plays an important role in the regulation of mammalian birth and lactation. It has been shown that oxytocin has important cardiovascular protective effects. Here we investigated the effects of oxytocin on vascular reactivity and underlying the mechanisms in human umbilical vein endothelial cells (HUVECs) in vitro and in rat aorta ex vivo. Oxytocin increased phospho-eNOS (Ser 1177) and phospho-Akt (Ser 473) expression in HUVECs in vitro and the aorta of rat ex vivo. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K), inhibited oxytocin-induced Akt and eNOS phosphorylation. In the rat aortic rings, oxytocin induced a biphasic vascular reactivity: oxytocin at low dose (10-9-10-8 M) initiated a vasorelaxation followed by a vasoconstriction at high dose (10-7 M). L-NAME (a nitric oxide synthase inhibitor), endothelium removal or wortmannin abolished oxytocin-induced vasorelaxation, and slightly enhanced oxytocin-induced vasoconstriction. Atosiban, an oxytocin/vasopressin 1a receptor inhibitor, totally blocked oxytocin-induced relaxation and vasoconstriction. PD98059 (ERK1/2 inhibitor) partially inhibited oxytocin-induced vasoconstriction. Oxytocin also increased aortic phospho-ERK1/2 expression, which was reduced by either atosiban or PD98059, suggesting that oxytocin-induced vasoconstriction was partially mediated by oxytocin/V1aR activation of ERK1/2. The present study demonstrates that oxytocin can activate different signaling pathways to cause vasorelaxation or vasoconstriction. Oxytocin stimulation of PI3K/eNOS-derived nitric oxide may participate in maintenance of cardiovascular homeostasis, and different vascular reactivities to low or high dose of oxytocin suggest that oxytocin may have different regulatory effects on vascular tone under physiological or pathophysiological conditions.

Inhibitory Effects of Epigallocatechin Gallate on Apoptosis in Human Vascular Endothelial Cells (혈관내피세포의 세포사멸작용에 대한 (-)Epigallocatechin Gallate의 억제효과)

  • Choi, Yean-Jung;Choi, Jung-Suk;Lee, Se-Hee;Lee, Yong-Jin;Kang, Jung-Sook;Kang, Young-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.4
    • /
    • pp.672-678
    • /
    • 2002
  • Oxidative stress contributes to cellular injury following clinical and experimental ischemia/reperfusion scenarios. Oxidative injury can induce cellular and nuclear damages that result in apoptotic cell death. We tested the hypothesis that the catechin flavonoid of (-)epigallocatechin gallate, a green tea polyphenol, inhibits hydrogen peroxide ($H_2O$$_2$)-induced apoptosis in human umbilical vein endothelial cells. The effect of apigenin, a flavone found in citrus fruits, on apoptosis parameters was also examined. A 30 min pulse treatment with 0.25 mM $H_2O$$_2$ decreased endothelial cell viability within 24 hrs by > 30% ; this was associated with nuclear condensation and biochemical DNA damage consistent with programmed cell death. In the 0.25 mM $H_2O$$_2$apoptosis model, 50${\mu}{\textrm}{m}$ (-)epigallocatechin gallate markedly increased cell viability with a reduction in the nuclear condensation and DNA fragmentation. In contrast, equimicromolar apigenin increased cell loss with intense DNA laddering, positive nick-end labeling and Hoechst 33258 staining. Thus, polyphenolic (-)epigallocatechin gallate, but not apigenin flavone, qualify as an antioxidant in apoptosis models caused by oxidative stress. Further work is necessary for elucidating the anti-apoptotic mechanisms of polyphenolic catechins.

Antiangiogenic Effect of 3--O-D-galactopyranosylglyceride Isolated from Chrysanthemum Coronarium L. (개채에서 분리한 3-O--D-galactopyranosylglyceride의 혈관형성 저해효과)

  • Lee Hyun Cheol;Song Ho Chul;Lim Jin Ki;Khil Jae Ho;Kim Sung Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1602-1607
    • /
    • 2004
  • 3-O-D-galactopyranosylglyceride (GPG; fatty acids R1, R2 = myristic acid 11.62%, palmitic acid 61.90% and oleic acid 26.48%) was isolated from Chrysanthemum coronarium L that has been used for treating renal and cardiovascular diseases as one of vegetables or medicinal drug. However, little was known about the anti-angiogenic activity of GPG. Thus, anti-angiogenic effect of GPG was evaluated in human umbilical vein endothelial cells (HUVECs) in vitro and in vivo. GPG effectively inhibited bFGF-induced migration and invasion of HUVECs in a concentration-dependent manner, whereas it did not inhibit bFGF-induced proliferation and capillary-like tube formation of HUVECs. To examine the mechanism of anti-angiogenic activity of GPG, gelatin zymography was carried out. GPG downregulated the expression of matrix metalloproteinase-2 in a concentration-dependent manner. Furthermore, GPG significantly disrupted bFGF-induced neovascularization on the chick chorioallantoic membrane assay in vivo. These results suggest that 3-O--D-galactopyranosylglyceride may inhibit neovascularization by inhibiting angiogenic activity of endothelial cells via regulation of matrix metalloproteinase-2 (MMP-2).