• Title/Summary/Keyword: Human Telomerase Reverse Transcriptase (hTERT)

Search Result 33, Processing Time 0.032 seconds

Bee Venom-induced Growth Inhibition of Human Lung Cancer Cells was Associated with Inhibition of Prostagladin E2 Production and Telomerase Activity. (인체폐암세포에서 봉독에 의한 prostagladin E2 생성 및 telomerase 활성 저하)

  • Kim, Jong-Hwan;Hwang, Won-Deuk;Kim, Byung-Woo;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.502-507
    • /
    • 2009
  • In modern oriental medicine, bee venom therapy is being used for aqua-acupuncture to relieve pain and to cure inflammatory diseases such as rheumatoid arthritis, osteoarthritis, and gout. Bee venom therapy has been processed and reported in many experimental studies, with regard to its effects on pain alleviation, anti-inflammation, removal of fever, anti-convulsion, suppression of tumor and immunity strengthening, etc., however, its mechanism of action, molecular targeting on prostaglandin $E_2$ ($PGE_2$) production and telomere length regulation in human cancer remains unclear. In this study, we investigated the effect of bee venom on the levels of cyclooxygenases (COXs) and telomere regulatory components of A549 human lung cancer cells. Bee venom-induced anti-proliferative effects of A549 cells were associated with the inhibition of human telomerase reverse transcriptase (hTERT) as well as human telomerase RNA (hTR), transcription factor c-myc and the activity of telomerase. In addition, bee venom treatment markedly decreased the levels of COX-2 mRNA and protein expression without significant changes in the expression of COX-1, which was correlated with a decrease in $PGE_2$ synthesis. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of bee venom.

Anti-proliferative Effects of Atractylis lancea (Thunb.) DC. via Down-regulation of the c-myc/hTERT/Telomerase Pathway in Hep-G2 Cells

  • Guo, Wei-Qiang;Li, Liang-Zhi;He, Zhuo-Yang;Zhang, Qi;Liu, Jia;Hu, Cui-Ying;Qin, Fen-Ju;Wang, Tao-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6363-6367
    • /
    • 2013
  • Atractylis lancea (Thunb.) DC. (AL), an important medicinal herb in Asia, has been shown to have anti-tumor effects on cancer cells, but the involved mechanisms are poorly understood. This study focused on potential effects and molecular mechanisms of AL on the proliferation of the Hep-G2 liver cancer cell line in vitro. Cell viability was assessed by MTT test in Hep-G2 cells incubated with an ethanol extract of AL. Then, the effects of AL on apoptosis and cell cycle progression were determined by flow cytometry. Telomeric repeat amplification protocol (TRAP) assays was performed to investigate telomerase activity. The mRNA and protein expression of human telomerase reverse transcriptase (hTERT) and c-myc were determined by real-time RT-PCR and Western blotting. Our results show that AL effectively inhibits proliferation in Hep-G2 cells in a concentrationand time-dependent manner. When Hep-G2 cells were treated with AL after 48h,the $IC_{50}$ was about 72.1 ${\mu}g/mL$. Apoptosis was induced by AL via arresting the cells in the G1 phase. Furthermore, AL effectively reduced telomerase activity through inhibition of mRNA and protein expression of hTERT and c-myc. Hence, these data demonstrate that AL exerts anti-proliferative effects in Hep-G2 cells via down-regulation of the c-myc/hTERT/telomerase pathway.

Isolation and characterization of bovine cementoblast progenitor cells

  • Saito, Masahiro;Tsunoda, Akira;Teranaka, Toshio
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.546.2-546
    • /
    • 2003
  • Dental follicle is the mesenchymal tissue which surrounds developing tooth germ. During tooth root development, periodontal components such as cementum, periodontal ligament and alveolar bone are considered to be created by progenitors present in the dental follicle. However, little is known about these progenitors. Previously we observed that cultured bovine dental follicle cells (BDFC) contained putative cementoblast progenitors. To further analyze the biology of these cells, we have attempted to immortalize BDFC by expression of the polycomb group protein Bmi-1 and human telomerase reverse transcriptase (hTERT). The BDFC expressing Bmi-1 and hTERT showed extended life span by 90 population doublings more than normal BDFC, and still contained cells with potential to differentiate into cementoblasts upon implantation into immunodeficiency mice. Among them, we established a clonal cell line designated as BCPb8, which formed cemetum-like mineralized tissue reactive to anti-cementum specific monoclonal antibody, 3G9, and expressed mRNA for bone sialoprotein, osteocalcin, osteopontin and type I collagen upon implantation. Thus with the combination of hTERT and Bmi-1, we succeeded in immortalization of cementoblast progenitor in BDFC without affecting differentiation potential. The BCPb8 progenitor cell line could be a useful tool not only to study cementogenesis but also to develop regeneration therapy for periodontitis.

  • PDF

Antiproliferative effect of Chungjogupae-tang treatment was associated with the inhibition of prostaglandin E2 release and Telomere active in human lung carcinoma cells (인체폐암세포에서의 prostaglandin E2 생성과 Telomere 활성에 미치는 청조구폐탕의 영향에 관한 연구)

  • Kim, Hoon;Park, Dong-Il
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.19 no.2
    • /
    • pp.26-39
    • /
    • 2006
  • Objective : The effect of water extract of Chungjogupae-tang (CJGPT) was investigated on the growth of human lung carcinoma A549 cells. Methods : MTT assay and fluorescent microscope performed to compare and examine the efficacy of CJGPT treatment on the cytostaticity of lung cancer cells in proportion to time and doses, and DAPI staining and Western blot analysis were used to examine their effect on apoptosis. In addition the quantitative RT-PCR was used to examine to lung cancer cells growth and Progtaglandin E2 and Telomerase activity were measured Results : Exposure of A549 cells to CJGPT resulted in the growth inhibition and apoptosis in a dose-dependent manner as measured by MTT assay and fluorescent microscope. The antiuoliferative effect by CJGPT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. CJGPT treatment resulted in an up-regulation of cyclin-dependent kinase inhibitor p21(WAF1/CIPl) in a p53-independent fashion. We found that CJGPT treatment decreased the levels of cyclooxygenase (COX)-2 and inducible nitric oxide synthease (iNOS) expression without significant changes in the expression of COX-1, which was correlated with a decrease in protaglandin E2 (PGE2) synthesis. CJGPT treatment also inhibited the levels of human telomerase reverse transcriptase (hTERT) and telomerase-associated protein (TEP)-1 mRNA expression, however the activity of telomerase was slightly increased by CJGPT treatment. Conclusion : These findings suggested that CJGPT-induced inhibition of human lung carcinoma A549 cell growth was connected with the induction of apoptotic cell death and the results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of CJGPT.

  • PDF

Molecular Mechanisms of Cell Cycle Arrest and Apoptosis by Dideoxypetrosynol A, a Polyacetylene from the Sponge Petrosia sp., in Human Monocytic Leukemia Cells

  • Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.243-251
    • /
    • 2006
  • Dideoxypetrosynol A, a polyacetylene from the marine sponge Petrosia sp., is known to exhibit significant selective cytotoxic activity against a small panel of human tumor cell lines, however, the mechanisms of which are poorly understood. In the present study, it was investigated the further possible mechanisms by which dideoxytetrosynol A exerts its anti-proliferative action in cultured human leukemia cell line U937. We observed that the proliferation-inhibitory effect of dideoxypetrosynol A was due to the induction of G1 arrest of the cell cycle and apoptosis, which effects were associated with up-regulation of cyclin D1 and down-regulation of cyclin E without any change in cyclin-dependent-kinases (Cdks) expression. Dideoxypetrosynol A markedly induced the levels of Cdk inhibitor p16/INK4a expression. Furthermore, down-regulation of phosphorylation of retinoblastoma protein (pRB) by this compound was associated with enhanced binding of pRB and the transcription factor E2F-1. The increase in apoptosis was associated with a dose-dependent up-regulation in pro-apoptotic Bax expression and activation of caspase-3 and caspase-9. Dideoxytetrosynol A decreased the levels of cyclooxygenase (COX)-2 mRNA and protein expression without significant changes in the levels of COX-1, which was correlated with a decrease in prostaglandin E2 (PGE2) synthesis. Furthermore, dideoxytetrosynol A treatment markedly inhibited the activity of telomerase, and the expression of human telomerase reverse transcriptase (hTERT), a main determinant of the telomerase enzymatic activity, was progressively down-regulated by dideoxytetrosynol A treatment in a dose-dependent fashion. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of dideoxytetrosynol A.

  • PDF

Genistein-induced Growth Inhibition was Associated with Inhibition of Cyclooxygenase-2 and Telomerase Activity in Human Cancer Cells. (인체 암세포에서 genistein에 의한 cyclooxygenase-2 및 telomerase의 활성 저하)

  • Kim, Jung-Im;Kim, Seong-Yun;Seo, Min-Jeong;Lim, Hak-Seob;Lee, Young-Choon;Joo, Woo-Hong;Choi, Byung-Tae;Jeong, Yong-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.884-890
    • /
    • 2008
  • Genistein, an isoflavone in soybean products, is a potential chemopreventive agent against various types of cancer. There are several studies documenting molecular alterations leading to cell cycle arrest at G2/M phase and induction of apoptosis; however, its mechanism of action and its molecular targets on the prostaglandin $E_2$ ($PGE_2$) production and telomere length regulation in human cancer remain unclear. In this study, we investigated the effect of genistein on the levels of cyclooxygenases (COXs) and telomere regulatory components of several human cancer cell lines (T24, human bladder carcinoma cells; U937, human leukemic cells; AGS, human stomach adenocarcinoma cells and SK-MEL-2, human skin melanoma cells). Genistein treatment resulted in the inhibition of cancer cell proliferation in a concentration-dependent manner. It was found that genistein treatment markedly decreased the levels of COX-2 mRNA and protein expression without significant changes in the expression of COX-1, which was correlated with a decrease in $PGE_2$ synthesis. Genistein treatment also partly inhibited the levels of human telomerase reverse transcriptase (hTERT) as well as human telomerase RNA (hTR) and telomerase-associated protein (TEP)-1, and the activity of telomerase. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-cancer activity of genistein.

Melittin-induced Aapoptosis is Associated with Inhibition of COX-2 and hTERT Expression in Human Lung Carcinoma A549 Cells (약침용 봉독성분 melittin의 영향에 의한 인체 폐암세포의 apoptosis 유도)

  • Ahn, Chang-beohm;Im, Chun-woo;Youn, Hyoun-min;Park, Su-jin;Choi, Yung-hyun
    • Journal of Acupuncture Research
    • /
    • v.20 no.5
    • /
    • pp.93-106
    • /
    • 2003
  • Objective : To investigate the possible molecular mechanism(s) of melittin as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Methods: MTT, morphological changes, DAPI staining, Western blot, RT-PCR and in vitro prostaglandin E2 (PGE2) accumulation assays were performed. Results: The anti-proliferative effect by melittin treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. Melittin induced apoptotic cell death in a concentration-dependent manner, which was associated with inhibition or degradation of apoptotic target proteins such as ${\beta}$-catenin, poly(ADP-ribose) polymerase(PARP) and phospholipase $C-{\gamma}1(PLC-{\gamma}1)$. Melittin treatment inhibited the expression of cyclooxygenase-2(COX-2) and accumulation of PGE2 in aconcentration-dependent fashion. In addition, Melittin treatment induced the down-regulation of telomerase reverse transcriptase(hTERT) and proto-oncogene c-myc expression of A549 cells. Conclusions: Taken together, these findings suggest that melittin-induced inhibition of human lung cancer cell proliferation is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and melittin may have therapeutic potential in human lung cancer.

  • PDF

Induction of Cdk Inhibitor p21 and Inhibition of hTERT Expression by the Aqueous Extract of Wikyung-tang in Human Lung Carcinoma Cells (인체폐암세포의 성장에 미치는 위경장의 영향에 관한 연구)

  • Choi Hae-Yun;Park Cheol;Choi Yung Hyun;Park Dong Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.553-560
    • /
    • 2004
  • In the present study, we investigated the anti-proliferative effects of aqueous extract of Wikyung-tang(WKT) on the growth of human lung carcinoma cell line A549. WKT treatment declined the cell viability and proliferation of A549 cells in a concentration-dependent manner. The anti-proliferative effects by WKT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. WKT treatment induced an inhibition and/or degradation of apoptotic target proteins such poly(ADP-ribose) polymerase (PARP) and phospholipase C-γ1 (PLC-γ1). WKT treatment did not affect the levels of other Bcl-2 family gene products, such as Bcl-2, Bax and Bad. Western blot analysis and RT-PCT data revealed that the levels of tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 were induced by WKT treatment in A549 cells. Additionally, WKT treatment induced the down-regulation of telomerase reverse transcriptase mRNA (hTERT) expression of A549 cells, however, the levels of other telomere-regulatory gene products were not affected. Taken together, these findings suggest that WKT-induced inhibition of human lung cancer cell proliferation is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products and WKT may have therapeutic potential in human lung cancer.

Antiproliferative Effect of RST Associated with the Inhibition of Cyclooxygenase-2 Expression and Prostaglandin E2 Release in Human Lung Carcinoma Cells (산두근 추출물이 인체폐암세포의 COX-2 발현 및 PGE2 생성에 미치는 영향)

  • Kim, Kang-Tae;Eom, Hyun-Sup;Chi, Gyoo-Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.907-915
    • /
    • 2007
  • In this study the effect of water extract of Sophora tonkinensis Gapnep (RST) was investigated on the growth of human lung carcinoma A549 cells. Exposure of A549 cells to RST resulted in the growth inhibition in a dose-dependent manner as measured by MTT assay. The antiproliferative effect by RST treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. RST treatment did not induce the cell cycle arrest and the levels of tumor suppressor p53 as well as cyclin-dependent kinase inhibitor p21(WAF1/CIP1). It was found that RST treatment decreased the levels of cyclooxygenase (COX) -2 mRNA and protein expression without significant changes in the expression of COX-1 and inducible nitric oxide synthase (iNOS), which was correlated with a decrease in prostaglandin E2 (PGE2) synthesis. RST treatment also slightly inhibited the levels of human telomerase reverse transcriptase (hTERT) mRNA and protein expression, and the activity of telomerase. Taken together, these findings suggested that RST-induced inhibition of human lung carcinoma A549 cell growth was aoosciated with the inhibition of COX-2 expression and PGE2 production. These results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of RST.

Antiproliferative Effect and Apoptotic Mechanism of Extract of Corydalis Yanhusuo on Human Hepatocarcinoma Cells (현호색(玄胡索)이 인체간암세포 증식억제 및 apoptosis 유발에 미치는 영향)

  • Oh, Myun- Taek;Eom, Hyun-Sup;Chi, Gyoo-Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1437-1449
    • /
    • 2007
  • In this study, the effect of extract of Corydalis yanhusuo (ECT) used in Oriental medicine therapy was investigated on the cell growth and apoptosis of HepG2 human hepatoma cells. It was found that ECT could inhibit the cell growth effectively in a dose-dependent manner, which was associated with morphological change and apoptotic cell death such as formation of apoptotic bodies, DNA fragmentation and increased populations of apoptotic-sub G1 phase. And we observed the effects of ECT on loss of mitochondrial membrane potential (MMP), using the JC-1 probe by DNA flow cytometric analysis. Apoptosis of HepG2 cells by ECT was associated with a down-regulation of anti apoptotic Bcl-2 expression, inhibitor of apoptosis proteins (IAPs) expression and proteolytic activation of caspase-3 and caspase-9. However, ECT did not affect the pro-apoptotic Bax expression and activity of caspase-8. ECT treatment also concomitant degradation and /or inhibition of poly (ADP-ribose) polymerase (PARP), phospholipase C-1 ($PLC{\gamma}1$). Furthermore, ECT treatment caused a dose-dependent inhibition of iNOS and cyclooxygenase-2 (Cox-2). Additionally ECT have been implicated in the regulation of telomerase expression. ECT treatment induced the down-regulation of telomerase reverse transcriptase mRNA (hTERT) expression of HepG2 cells. Taken together, these findings suggest that ECT may be a potential chemotherapeutic agent for the control of HepG2 human hepatoma cells.