Antiproliferative Effect and Apoptotic Mechanism of Extract of Corydalis Yanhusuo on Human Hepatocarcinoma Cells

현호색(玄胡索)이 인체간암세포 증식억제 및 apoptosis 유발에 미치는 영향

  • Oh, Myun- Taek (Department of Pathology, College of Oriental Medicine, Dongeui University) ;
  • Eom, Hyun-Sup (Department of Pathology, College of Oriental Medicine, Dongeui University) ;
  • Chi, Gyoo-Yong (Department of Pathology, College of Oriental Medicine, Dongeui University)
  • 오명택 (동의대학교 한의과대학 병리학교실) ;
  • 엄현섭 (동의대학교 한의과대학 병리학교실) ;
  • 지규용 (동의대학교 한의과대학 병리학교실)
  • Published : 2007.12.25

Abstract

In this study, the effect of extract of Corydalis yanhusuo (ECT) used in Oriental medicine therapy was investigated on the cell growth and apoptosis of HepG2 human hepatoma cells. It was found that ECT could inhibit the cell growth effectively in a dose-dependent manner, which was associated with morphological change and apoptotic cell death such as formation of apoptotic bodies, DNA fragmentation and increased populations of apoptotic-sub G1 phase. And we observed the effects of ECT on loss of mitochondrial membrane potential (MMP), using the JC-1 probe by DNA flow cytometric analysis. Apoptosis of HepG2 cells by ECT was associated with a down-regulation of anti apoptotic Bcl-2 expression, inhibitor of apoptosis proteins (IAPs) expression and proteolytic activation of caspase-3 and caspase-9. However, ECT did not affect the pro-apoptotic Bax expression and activity of caspase-8. ECT treatment also concomitant degradation and /or inhibition of poly (ADP-ribose) polymerase (PARP), phospholipase C-1 ($PLC{\gamma}1$). Furthermore, ECT treatment caused a dose-dependent inhibition of iNOS and cyclooxygenase-2 (Cox-2). Additionally ECT have been implicated in the regulation of telomerase expression. ECT treatment induced the down-regulation of telomerase reverse transcriptase mRNA (hTERT) expression of HepG2 cells. Taken together, these findings suggest that ECT may be a potential chemotherapeutic agent for the control of HepG2 human hepatoma cells.

Keywords

References

  1. Schulze-Osthoff, K., Ferrari, D., Los, M., Wesselborg, S. and Peter, M.E. Apoptosis signaling by death receptors. Eur. J. Biochem. 254: 439-459, 1998 https://doi.org/10.1046/j.1432-1327.1998.2540439.x
  2. Chiarugi, V., Magnelli, L., Cinelli, M. and Basi, G. Apoptosis and the cell cycle. Cell Mol. Biol Res. 40: 603-612, 1994
  3. 윤시진, 김연섭. 현호색 홍화 적작약이 관절염 흰쥐의 염증과 간에 미치는 영향. 동의생리병리학회지 19(2):475-480, 2005
  4. Lee, K.H., Huh, J.W., Choi, M.M., Yoon, S.Y., Yang, S.J., Hong, H.N., Cho, S.W. Regulation of glutamate level in rat brain through activation of glutamate dehydrogenase by Corydalis ternata. Exp Mol Med. 37(4):371-377, 2005 https://doi.org/10.1038/emm.2005.47
  5. Chung, Y.T., Park, S.T., Mun, J.Y., Kim, J.M., Choi, M.K., Han, D.S. and Kim, B. Cytotoxic effects of actinomycin D, adriamycin and puromycin in the development stage of early mouse embryos. J. Wonkwang Medical Sci. 3: 13-34, 1987
  6. 李時珍. 本草綱目. 고문사, 서울, p 467, 1973
  7. 전국한의대본초학교수 공편. 本草學. 영림사, 서울, pp 413-414, 1998
  8. Yuan, C.S., Mehendale, S.R., Wang, C.Z., Aung, H.H., Jiang, T., Guan, X., Shoyama, Y. Effects of Corydalis yanhusuo and Angelicae dahuricae on cold pressor-induced pain in humans: a controlled trial. J Clin Pharmacol. 4(11):1323-1327, 2004
  9. 國家藥典委員會編. 中華人民共和國藥典. 化學工業出版社, 北京, p 108, 2000
  10. 식품의약품안전청 홈페이지, http://herbmed.kfda.go.kr /herb /search_details.jsp?code=KP-056
  11. 江蘇新醫學院編, 中藥大辭典上. 上海科技出版社, 上海, p 921, 1978
  12. 홍성범. 임상항암중초약. 성보사, 서울, pp 236-238, 265, 1998
  13. Cossarizza, A., Cooper, E.L., Quaglino, D., Salvioli, S., Kalachnikova, G. and Franceschi, C. Mitochondrial mass and membrane potential in coelomocytes from the earthworm Eisenia foetida: studies with fluorescent probes in single intact cells. Biochem. Biophys. Res. Commun. 14: 503-510, 1995
  14. Guo, W.X., Pye, Q.N., Williamson, K.S., Stewart, C.A., Hensley, K.L., Kotake, Y., Floyd, R.A. and Broyles, R.H. Mitochondrial dysfunction in choline deficiency-induced apoptosis in cultured rat hepatocytes. Free Radic. Biol. Med. 39: 641-665, 2005 https://doi.org/10.1016/j.freeradbiomed.2005.04.013
  15. Elledge, S.J. and Harper, J.W. Cdk inhibitors: on the threshold of checkpoints and development. Curr. Opin. Cell Biol. 6: 847-852, 1994 https://doi.org/10.1016/0955-0674(94)90055-8
  16. Li, Y., Jenkins, C.W., Nichols, M.A. and Xiong, Y. Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene, 9: 2261-2268, 1994
  17. Datto, M.B., Yu, Y. and Wang ,X.F. Functional analysis of thetransforming growth factor $\beta$ responsive elements in the WAF1/Cip1/p21 promoter. J. Biol. Chem. 270: 28623-28628, 1995 https://doi.org/10.1074/jbc.270.48.28623
  18. Morgan, D.O. Principles of CDK regulation. Nature, 374: 131-134, 1995 https://doi.org/10.1038/374131a0
  19. Rosse, T., Olivier, R., Monney, L., Rager, M., Conus, S., Fellay, I., Jansen, B. and Borner, C. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature, 391: 496-499, 1998 https://doi.org/10.1038/35160
  20. Sheikh, M.S. and Huang, Y. Death receptors as targets of cancer therapeutics. Curr. Cancer Drug Targets, 4: 97-104, 2004 https://doi.org/10.2174/1568009043481597
  21. Klas, C., Debatin, K.M., Jonker, R.R. and Krammer, P.H. Activation interferes with the APO-1 pathway in mature human T cells. Int. Immunol, 5: 625-630, 1993 https://doi.org/10.1093/intimm/5.6.625
  22. Wiley, S.R., Schooley, K., Smolak, P.J., Din, W.S., Huang, C.P., Nicholl, J.K., Sutherland, G.R., Smith T.D., Rauch, C., Smith, C.A., et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3: 673-682, 1995 https://doi.org/10.1016/1074-7613(95)90057-8
  23. Ashkenazi, A., Pai, R.C., Fong, S., Leung, S., Lawrence, D.A., Marsters, S.A., Blackie, C., Chang, L., McMurtrey, A.E., Hebert, A., DeForge, L., Koumenis, I.L., Lewis, D., Harris, L., Bussiere, J., Koeppen, H., Shahrokh, Z. and Schwall, R.H. Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104: 155-162, 1999 https://doi.org/10.1172/JCI6926
  24. Ashkenazi, A. and Dixit, V.M. Death receptors: signaling and modulation. Science, 281: 1305-1308, 1998 https://doi.org/10.1126/science.281.5381.1305
  25. Tibbetts, M.D., Zheng, L. and Lenardo, M.J. The death effector domain protein family: regulators of cellular homeostasis. Nat. Immunol. 4: 404-409, 2003 https://doi.org/10.1038/ni0503-404
  26. Fulda, S. and Debatin, K.M. Exploiting death receptor signaling pathways for tumor therapy. Biochem. Biophys. Acta. 1705: 27-41, 2004.
  27. Allen, R.T., Cluck, M.W. and Agrawal, D.K. Mechanisms controlling cellular suicide: role of Bcl-2 and caspases. Cell Mol. Life Sci. 54: 427-445, 1998 https://doi.org/10.1007/s000180050171
  28. Vegran, F., Boidot, R., Oudin, C., Riedinger, J.M. and Lizard-Nacol, S. Implication of alternative splice transcripts of caspase-3 and survivin in chemoresistance. Bull Cancer, 92: 219-226, 2005.
  29. Holcik, M., Gibson, H. and Korneluk, R.G. XIAP: apoptotic brake and promising therapeutic target. Apoptosis. 6: 253-261, 2001 https://doi.org/10.1023/A:1011379307472
  30. Cheng, J.Q., Jiang, X., Fraser, M., Li, M., Dan, H.C., Sun, M. and Tsang, B.K. Role of X-linked inhibitor of apoptosis protein in chemoresistance in ovarian cancer: possible involvement of the phosphoinositide-3 kinase/Akt pathway. Drug Resist. 5: 131-146, 2002 https://doi.org/10.1016/S1368-7646(02)00003-1
  31. Tewari, M., Quan, L.T., O'Rourke, K., Desnoyers, S., Zeng, Z., Beidler, D.R., Poirier, G.G., Salvesen, G.S. and Dixit, V.M. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell. 81: 801-809, 1995 https://doi.org/10.1016/0092-8674(95)90541-3
  32. Kaufmann, S.H., Desnoyers, S., Ottaviano, Y., Davidson, N.E. and Poirier, G.G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53: 3976-3985, 1993
  33. Johnson, J.P. Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev. 18: 345-357, 1999 https://doi.org/10.1023/A:1006304806799
  34. Fukuda, K. Apoptosis-associated cleavage of beta-catenin in human colon cancer and rat hepatoma cells. Int, J, Biochem, Cell Biol. 31: 519-529, 1999 https://doi.org/10.1016/S1357-2725(98)00119-8
  35. Chang, J.S., Noh, D.Y., Park, I.A., Kim, M.J., Song, H., Ryu, S.H. and Suh, P.G. Overexpression of phospholipase C-gamma1 in rat 3Y1 fibroblast cells leads to malignant transformation. Cancer Res. 57: 5465-5468, 1997
  36. Myklebust, J.H., Blomhoff, H.K., Rusten, L.S., Stokke, T. and Smeland, E.B. Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells. Exp, Hematol. 30: 990-1000, 2002 https://doi.org/10.1016/S0301-472X(02)00868-8
  37. Giercksky, K.E. COX-2 inhibition and prevention of cancer. Best Pract. Res. Clin. Gastroenterol. 15: 821-833, 2001 https://doi.org/10.1053/bega.2001.0237
  38. Vainio, H. Is COX-2 inhibition a panacea for cancer prevention? Int. J. Cancer. 94: 613-614, 2001 https://doi.org/10.1002/ijc.1518
  39. Sawaoka, H., Tsuji, S., Tsujii, M., Gunawan, E.S., Sasaki, Y., Kawano, S. and Hori, M. Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo. Lab. Invest. 79: 1469-1477, 1999
  40. Surh, Y.J., Chun, K.S., Cha, H.H., Han, S.S., Keum, Y.S., Park, K.K. and Lee, S.S. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kB activation. Mutat. Res. 480: 243-268, 2001 https://doi.org/10.1016/S0027-5107(01)00183-X
  41. Poole, J.C., Andrews, L.G. and Tollefsbol, T.O. Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT). Gene. 269: 1-12, 2001 https://doi.org/10.1016/S0378-1119(01)00440-1
  42. Vaziri, H., West, M.D., Allsopp, R.C., Davison, T.S., Wu, Y.S., Arrowsmith, C.H., Poirier, G.G. and Benchimol, S. ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO J. 16: 6018-6033, 1997 https://doi.org/10.1093/emboj/16.19.6018