• Title/Summary/Keyword: Human Dermal Fibroblasts (HDF cell)

Search Result 16, Processing Time 0.026 seconds

Effect of Topically Applied Silver Sulfadiazine on Fibroblast Cell Proliferation and Biomechanical Properties of the Wound

  • Lee, Ae-Ri-Cho;Moon, Hee-Kyung
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.855-860
    • /
    • 2003
  • The effect of silver sulfadiazine (SSD) on the proliferation of human dermal fibroblast (HDF) was studied to determine the impact of the drug on the wound healing process and dermal mechanical strength. Human dermal fibroblasts were cultured to 80% confluency using DMEM with 10% FBS and viability of the cell was estimated using neutral red assay. In addition, the $2^{nd}$ degree burn wound was prepared on the anterior part of rabbit ear skin and dressings containing SSD were applied for 96 h. Presence of inflammatory cells and degree of re-epithelialization were investigated in the wound. After 15 day of the induction of burn wounds, the treated area was excised and dermal mechanical strength was quantitatively measured with a constant speed tensiometer. SSD was found to be highly cyto-toxic in cultured HDF cells. The topical application of SSD (2%) could control the infection as evidenced by the lack of accumulation of inflammatory cells in histological evaluation. Therefore, these observations suggested that the impairment of dermal regeneration and decreased mechanical strength of dermal tissue was resulted from the cyto-toxic effect of SSD on dermal cells. Since the decreased mechanical strength may lead to reduction in resilience, toughness and maximum extension of the tissue, the identification of optimum dose for SSD that limits infection while minimizes the cyto-toxic effect may be clinically relevant.

Effect of nitric oxide on the expression of matrix metalloproteinases by the UV irradiated human dermal fibroblasts

  • Taeboo Choe;Lee, Bumchun;Park, Inchul;Seokil Hong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.1
    • /
    • pp.31-41
    • /
    • 2002
  • The production of matrix matalloproteinases(MMPs) by the UV irradiated skin fibroblast and the degradation of extracellular matrix(ECM) by these enzymes is known as one of the main reasons of photoaging. Recently, Fisher group showed that the MMP expression is mainly regulated by the mitogen-activated protein(MAP) kinas family, such as extracellular signal-regulated kinase(ERK), c-Jun amino-terminal kinase(JNK) and p38, each of which forms a signaling pathway. In this work we first examined the effect of nitric oxide (NO) on the production of MMP-1 and MMP-2 by the human dermal fibroblasts (HDFs). NO is a multifunctional messenger molecule generated from L-arginine and involved in many kinds of signaling pathway. We found that the treatment of HDF with NO donor, sodium nitroprusside (SNP) enhanced the expression of MMPs with or without UV irradiation and the treatment with nitric oxide synthase (NOS) inhibitors resulted in the significant decrease of MMPs production. From these results, we concluded that the production of MMPs by the UV irradiated HDF is regulated through the signaling pathway involving NO and cyclic GMP.

Effects of Direct Cell Contact Between Monocytes and Fibroblasts on the Interleukin-6 Production and Cell Proliferation of Human Gingival and Peri - odontal Ligament Fibroblasts (치은섬유아세포와 치주인대섬유아세포의 interleukin-6 분비 및 세포성장에 미치는 단핵구세포주와 섬유아세포의 세포간 접촉작용)

  • Kim, Soo-Ah;Lee, Ho;Kim, Hyung-Seop;Oh, Kwi-Ok
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.4
    • /
    • pp.803-823
    • /
    • 1999
  • In order to reveal immunopathogenesis of periodontal tissue destruction, it is important to clarify the molecular mechanism of trafficking and retention of activated leukocytes, including monocytes/macrophages. Gingival fibroblasts may be involved in the regulation of inflammatory cell accumulation in the extravascular periodontal connective tissues via cytokine production and surface expression of adhesion molecules. In this study, it was investigated the molecular basis for the adhesive interactions between monocytes and fibroblasts such as peri-odontal ligament fibroblast(PDLF), human gingival fibroblast(HGF), and human dermal fibroblast(HDF). First, it was examined the evidence whether monocyte-fibroblast cell contact may cause signal transduction in fibroblasts. Being directly in contact with fixed human monocyte cell line THP-1, or U937, upregulation of IL-6 production, $TNF-{\alpha}$ mRNA expression and increased cell proliferation could be seen for fibroblasts. IL-6 production induced by monocyte- fibroblast coculture were further increased when fibroblasts had been pretreated with $IFN-{\gamma}$ or $IL-1{\beta}$ , and monocytes with LPS. Next, it was examined the expression of ICAM-1 which has been known to be involved in accumulation and activation of leukocytes in inflammatory diseases such as periodontitis. ICAM-1 was upregulated up to 10-fold on PDLF, HGF, and HDF by exposure to $IFN-{\gamma}$ or $IL-1{\beta}$. Furthermore, anti-ICAM-1 monoclonal antibody clearly blocked cocultureinduced IL-6 production by fibroblasts, suggesting that $ICAM-1/{\beta}_2$integrin pathway is involved in periodontal fibroblastmonocyte interaction. Overall, these findings provide evidence that periodontal fibroblasts could be involved in the accumulation and retention of monocytes/macrophages in periodontal inflammatory lesion at least in part by ICAM-1 expression. In addition, periodontal fibroblast-monocyte interaction could cause activation signals in fibroblasts intracellularly which result in cytokine production and cell proliferation. Thus, periodontal fibroblasts are speculated to play an important role in immunoregulation and tissue destruction in chronic periodontal diseases by interaction with monocytes/macrophages.

  • PDF

Cell Biological Function of Secretome of Adipose-Derived Stem Cells on Human Dermal Fibroblasts and Keratinocytes (인체 섬유아세포 및 케라티노사이트에 대한 지방줄기세포 분비물의 세포생물학적 기능)

  • Lee, Jae-Seol;Lee, Jong-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.117-127
    • /
    • 2012
  • The beneficial effects of adipose-derived stem cell conditioned media (ADSC-CM) for skin regeneration have previously been reported, despite the precise mechanism of how ADSC-CM promotes skin regeneration remaining unclear. ADSC-CM contains various secretomes and this may be a factor in it being a good resource for the treatment of skin conditions. It is also known that ADSC-CM produced in hypoxia conditions, in other words Advanced Adipose-Derived Stem cell Protein Extract (AAPE), has excellent skin regenerative properties. In this study, a human primary skin cell was devised to examine how AAPE affects human dermal fibroblast (HDF) and human keratinocyte (HK), which both play fundamental roles in skin regeneration. The promotion of collagen formation by HDFs was observed at 0.32 mg/ml of AAPE. AAPE treatment significantly stimulated stress fiber formation. DNA gene chips demonstrated that AAPE in HKs (p<0.05) affected the expression of 133 identifiable transcripts, which were associated with cell proliferation, migration, cell adhesion, and response to wounding. Twenty five identified proteins, including MMP, growth factor and cytokines such as CD54, FGF-2, GM-CSF, IL-4, IL-6, VEGF, TGF-${\beta}2$, TGF-${\beta}3$, MMP-1, MMP-10, and MMP-19, were contained in AAPE via antibody arrays. Thus, AAPE might activate the HK biological function and induce the collagen synthesis of HDF. These results demonstrate that AAPE has the potential to be used for clinic applications aimed at skin regeneration.

Evaluations on Antioxidant Effect of Water Extract from Graviola Leaves (그라비올라잎 열수추출물의 항산화 효능 평가)

  • Choi, Jong-Hwa;Ohk, Seung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.129-135
    • /
    • 2017
  • This study examined the antioxidant activity of the water extract from graviola leaves to develop a harmless and highly stable natural antioxidant. The total polyphenol content, total flavonoid content, DPPH radical scavenging activity, and MTT assay activity were measured. As a result, 62.3 g of the water extract from graviola leaves was obtained at $98^{\circ}C$ using 300 g of graviola leaf powder. The total polyphenol content was $291.97+2.39{\mu}g/mL$ and the total flavnoid content was $161{\pm}7.85{\mu}g/mL$ in a 1 mg/mL water extract from graviola leaves. The DPPH radical scavenging activity showed 51.6%, 67.8%, 79%, 82.4% and 83.9% at concentrations of 1, 2.5, 5, 10 and 15 mg/mL. This shows concentration-dependent scavenging activity and significant antioxidant activity. As a result of measuring the toxicity about HDF cells, a HDF cell survival rate of 100% was observed at a 150 mg /mL concentration, which was the same as that of the control group and a higher cell survival rate at a lower concentration. In conclusion, the graviola leaf extract can be developed as a material of food or cosmetics containing natural antioxidants.

Protective Effects of Bifidobacterium bifidum Culture Supernatants and Intracellular Cell-Free Extracts on Human Dermal Fibroblasts against UV-B Irradiation (인간 진피섬유아세포에서 Bifidobacterium bifidum 배양액 및 추출액의 자외선B에 대한 보호 효능)

  • Gwon, Gi Yeong;Park, Gwi Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.7
    • /
    • pp.801-808
    • /
    • 2017
  • The present study investigated the protective effects of Bifidobacterium bifidum culture supernatants (BbSC) and intracellular cell-free extracts (BbICFE) on human dermal fibroblasts (HDFs) against ultraviolet-B (UV-B) irradiation. HDFs were treated with UV-B, UV-B+BbCS, and UV-B+BbICFE. Treatment of UV-B-irradiated HDFs with BbCS and BbICFE significantly increased cell viability compared to UV-B-irradiated HDFs. BbCS treatment reduced senescence in HDFs by approximately 40.0%. Moreover, sub-G1 phase was significantly reduced in BbCS- and BbICFE-treated HDFs (3.3% and 4.5%, respectively). The effect of UV-B on oxidative damage of HDFs was measured by dichlorofluorescin diacetate. Fluorescence intensity significantly increased in UV-B-irradiated HDFs. Inhibition of cellular reactive oxygen species in HDFs treated with 0.01% BbCS was the highest at 34.1%. Levels of p21 and p53 protein expression induced by UV-B irradiation were reduced by treatment with BbCS and BbICFE (47.0% and 35.6%, respectively). These results show that BbCS and BbICFE reduce UV-B-induced cellular senescence and apoptosis in HDFs. Thus, BbCS and BbICFE can be used as potential agents for protection of UV-B-induced skin cell damage.

Human collagen alpha-2 type I stimulates collagen synthesis, wound healing, and elastin production in normal human dermal fibroblasts (HDFs)

  • Hwang, Su Jin;Ha, Geun-Hyoung;Seo, Woo-Young;Kim, Chung Kwon;Kim, KyeongJin;Lee, Sang Bae
    • BMB Reports
    • /
    • v.53 no.10
    • /
    • pp.539-544
    • /
    • 2020
  • Skin aging appears to be the result of overlapping intrinsic (including genetic and hormonal factors) and extrinsic (external environment including chronic light exposure, chemicals, and toxins) processes. These factors cause decreases in the synthesis of collagen type I and elastin in fibroblasts and increases in the melanin in melanocytes. Collagen Type I is the most abundant type of collagen and is a major structural protein in human body tissues. In previous studies, many products containing collagen derived from land and marine animals as well as other sources have been used for a wide range of purposes in cosmetics and food. However, to our knowledge, the effects of human collagen-derived peptides on improvements in skin condition have not been investigated. Here we isolate and identify the domain of a human COL1A2-derived protein which promotes fibroblast cell proliferation and collagen type I synthesis. This human COL 1A2-derived peptide enhances wound healing and elastin production. Finally, the human collagen alpha-2 type I-derived peptide (SMM) ameliorates collagen type I synthesis, cell proliferation, cell migration, and elastin synthesis, supporting a significant anti-wrinkle effect. Collectively, these results demonstrate that human collagen alpha-2 type I-derived peptides is practically accessible in both cosmetics and food, with the goal of improving skin condition.

Screening of Plants with Inhibitory Activity on Cellular Senescence

  • Lee, Seung-Eun;Kim, Jae-Ryong;Noh, Hyung-Jun;Kim, Geum-Sook;Lee, Jeong-Hoon;Choi, Jehun;Lee, Dae-Young;Kim, Seung-Yu
    • Korean Journal of Plant Resources
    • /
    • v.27 no.6
    • /
    • pp.601-609
    • /
    • 2014
  • In this study, the effect of plant extract on the senescence action and cell survival rate in two types of cells, in which aging was derived by adriamycin, was analyzed to find the materials for suppressing cell senescence from natural resources. The results are as follows. For human umbilical vein endothelial cells (HUVECs), the fruit of Physalis angulata L. and the aerial part of Synurus deltoides (Aiton) Nakai showed excellent cell-senescence inhibition activities in a treatment concentration-dependent manner, demonstrating the high possibility for utilization as a material for prevention and treatment for vascular diseases. The water extract from the root of Polygonatum odoratum var. pluriflorum for variegatum Y. N. Lee showed potent cell-senescence inhibitory effect for human dermal fibroblasts (HDFs). Thus it is considered that the additional study on the plant needs for elucidating the possible utilization as material for skin health improvement.

The Effect of Magnolol on UVB-induced Inflammation Damage Control via the Nrf2-SOCS3-Jak2-STAT3 Pathway in Human Dermal Fibroblasts (마그놀롤의 HDF세포에서 Nrf2-SOCS3-Jak2-STAT3에 의한 UVB 유래 염증데미지 조절)

  • Nam, Young sun;Ji, Juree
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.867-876
    • /
    • 2020
  • This study investigated the repair of UVB-induced cell damage by magnolol. We performed a drug-repurposing screen, and, in the STAT3 reporter gene assay, magnolol was identified as a suppressor of STAT3 that improves the cell viability of HDF cells. HDF cells treated with IL-6, UVB, and IFNγ showed the highest expression of Jak2 and phosphorylated STAT3 (p-STAT3), and magnolol was able to decrease the expression of Jak2 and p-STAT3 in UVB-induced cells. Moreover, UVB-damaged cell growth increased significantly in correlation with both reactivation and with magnolol in a dose-dependent manner. Compared with AG490 (a Jak2 inhibitor) treatment of UVB-treated HDF cells, cell proliferation increased significantly. We confirmed that AG490 and magnolol reduced TNF-α concentrations, and Western blotting (protein level) showed decreases in Jak2 and p-STAT3 expression in only the magnolol-treated cells. The expression of Jak2, p-STAT3, and SOCS3 also increased only after treatment with magnolol. Cells were treated with magnolol and ML385 (an NRF2 inhibitor), and these secondary metabolites reduced cell proliferation and NRF2 expression. The amount of MMP9 was also increased by cotreatment with magnolol and ML385. Collectively, these results demonstrate the potential of magnolol for repairing cells after UVB-induced damage by regulating the expression of NRF2, SOCS3, Jak2, and STAT3.

Anti-Inflammatory Effects of Streamed Platycodon grandiflorum against UVB Radiation-Induced Oxidative Stress in Human Primary Dermal Fibroblast

  • Lee, Ji Yeon;Park, Jeong-Yong;Lee, Dae Young;Kim, Hyung Don;Kim, Geum-Soog;Lee, Seung Eun;Seo, Kyung Hye
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.4
    • /
    • pp.495-501
    • /
    • 2018
  • Ultraviolet B (UVB) exposure is a risk factor for skin damage resulting in oxidative stress, inflammation, and cell death. The purpose of this study was to investigate the physicochemical properties of Platycodon grandiflorum (PG) to improve its biological activities using a three-step steaming process. We investigated the protective effects of PG and steamed PG extracts on human dermal fibroblasts (HDFs) against UVB radiation-induced oxidative stress and inflammation as well as the underlying mechanisms. The antioxidant potential of the PG extracts was evaluated by measuring the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) scavenging activity. ABTS and DPPH were shown by the 0, 30, and 70% ethanol extracts of 2S-PG and 3S-PG ($IC_{50}$, 28~45 and $27{\sim}30{\mu}g/mL$, respectively). Treatment of UVB-irradiated cells with steamed PG ($25{\sim}400{\mu}g/mL$) did not affect their viability. The streamed PG extract suppressed UVB-induced generation of reactive oxygen species (ROS). In addition, streamed PG extract reduced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expression in UVB-irradiated HDF, regulating nuclear factor $(NF)-{\kappa}B$ expression. These findings suggest that steamed PG extract may be potentially effective against inflammation associated with UVB-induced oxidation stress.