Browse > Article
http://dx.doi.org/10.4014/kjmb.1204.04001

Cell Biological Function of Secretome of Adipose-Derived Stem Cells on Human Dermal Fibroblasts and Keratinocytes  

Lee, Jae-Seol (Department of Biomaterial Control, Dong-Eui University)
Lee, Jong-Hwan (Department of Biomaterial Control, Dong-Eui University)
Publication Information
Microbiology and Biotechnology Letters / v.40, no.2, 2012 , pp. 117-127 More about this Journal
Abstract
The beneficial effects of adipose-derived stem cell conditioned media (ADSC-CM) for skin regeneration have previously been reported, despite the precise mechanism of how ADSC-CM promotes skin regeneration remaining unclear. ADSC-CM contains various secretomes and this may be a factor in it being a good resource for the treatment of skin conditions. It is also known that ADSC-CM produced in hypoxia conditions, in other words Advanced Adipose-Derived Stem cell Protein Extract (AAPE), has excellent skin regenerative properties. In this study, a human primary skin cell was devised to examine how AAPE affects human dermal fibroblast (HDF) and human keratinocyte (HK), which both play fundamental roles in skin regeneration. The promotion of collagen formation by HDFs was observed at 0.32 mg/ml of AAPE. AAPE treatment significantly stimulated stress fiber formation. DNA gene chips demonstrated that AAPE in HKs (p<0.05) affected the expression of 133 identifiable transcripts, which were associated with cell proliferation, migration, cell adhesion, and response to wounding. Twenty five identified proteins, including MMP, growth factor and cytokines such as CD54, FGF-2, GM-CSF, IL-4, IL-6, VEGF, TGF-${\beta}2$, TGF-${\beta}3$, MMP-1, MMP-10, and MMP-19, were contained in AAPE via antibody arrays. Thus, AAPE might activate the HK biological function and induce the collagen synthesis of HDF. These results demonstrate that AAPE has the potential to be used for clinic applications aimed at skin regeneration.
Keywords
ADSC-CM; skin regeneration; stress fiber; collagen synthesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adams, J. C. 1995. Formation of stable microspikes containing actin and the 55 kDa actin bundling protein actin and the 55 kDa actin bundling protein, fascin, is a consequence of cell adhesion to thrombospondin-1: Implications for the anti-adhesive activities of thrombospondin-1. J. Cell Sci. 108: 1977-1990.
2 Bandyopadhyay, B., J. Fan, S. Guan, Y. Li, M. Chen, D. T. Woodley, and W. Li. 2006. A "traffic control" role for TGFbeta3: Orchestrating dermal and epidermal cell motility during wound healing. J. Cell Biol. 172: 1093-1105.   DOI
3 Bevan, D., E. Gherardi, T. P. Fan, D. Edwards, and R. Warn. 2004. Diverse and potent activities of HGF/SF in skin wound repair. J. Pathol. 203: 831-838.   DOI
4 Chen, B., A. Li, D. Wang, M. Wang, L. Zheng, and J. R. Bartles. 1999. Espin contains an additional actin-binding site in its N terminus and is a major actin-bundling protein of the sertoli cell-spermatid ectoplasmic specialization junctional plaque. Mol. Biol. Cell 10: 4327-4339.   DOI
5 Dong, G., T. L. Lee, N. T. Yeh, J. Geoghegan, C. Van Waes, and Z. Chen. 2004. Metastatic squamous cell carcinoma cells that overexpress c-Met exhibit enhanced angiogenesis factor expression, scattering and metastasis in response to hepatocyte growth factor. Oncogene 23: 6199-6208.   DOI
6 Cramer, L. P., M. Siebert, and T. J. Mitchison. 1997. Identification of novel graded polarity actin filament Bundles in locomoting heart fibroblasts: implications for the generation of motile force. J. Cell Biol. 136: 1287-1305.   DOI
7 Efimenko, A., E. E. Starostina, K. A. Rubina, N. I. Kalinina, and E. V. Parfenova. 2010. Viability and angiogenic activity of mesenchymal stromal cells from adipose tissue and bone marrow in hypoxia and inflammation in vitro. Tsitologiia 52: 144-154.
8 Gallucci, R. M., D. K. Sloan, J. M. Heck, A. R. Murray, and S. J. O'Dell. 2004. Interleukin 6 indirectly induces HK migration. J. Invest. Dermatol. 122: 764-772.   DOI
9 Huber, K. 2001. Plasminogen activator inhibitor type-1 (part one): Basic mechanisms, regulation, and role for thromboembolic disease. J. Thromb. Thrombolys 11: 183-193.   DOI
10 Igarashi, A., H. Okochi, D. M. Bradham, and G. R. Grotendorst. 1993. Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol. Biol. Cell 4: 637-645.   DOI
11 Kim, W. S., B. S. Park, H. K. Kim, J. S. Park, K. J. Kim, J. S. Choi, S. J. Chung, D. D. Kim, and J. H. Sung. 2008. Evidence supporting antioxidant action of adipose-derived stem cells: Protection of human dermal fibroblasts from oxidative stress. J. Dermatol. Sci. 49: 133-142.   DOI
12 Mansbridge, J. 2008. Skin tissue engineering. J. Biomater. Sci. Polym. Ed. 19: 955-968.   DOI
13 Kim, W. S., B. S. Park, and J. H. Sung. 2009. Protective role of adipose-derived stem cells and their soluble factors in photoaging. Arch. Dermatol. Res. 301: 329-336.   DOI
14 Kim, W. S., B. S. Park, J. H. Sung, J. M. Yang, S. B. Park, S. J. Kwak, and J. S. Park. 2007. Wound healing effect of adipose-derived stem cells: A critical role of secretory factors on human dermal fibroblasts. J. Dermatol. Sci. 48: 15-24.   DOI
15 Mann, A., K. Breuhahn, P. Schirmacher, and M. Blessing. 2001. HK-derived granulocyte-macrophage colony stimulating factor accelerates wound healing: Stimulation of HK proliferation, granulation tissue formation, and vascularization. J. Invest. Dermatol. 117: 1382-1390.   DOI
16 Nobes, C. D., and A. Hall. 1999. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol. 144: 1235-1244.   DOI
17 Nolte, S.V., and W. Xu, H. O. Rennekampff, and H. P. Rodemann. 2008. Diversity of fibroblasts a review on implications for skin tissue engineering. Cells Tissues Organs 187: 165-176.   DOI
18 Ren, H., Y. Cao, Q. Zhao, J. Li, C. Zhou, L. Liao, M. Jia, Q. Zhao, H. Cai, Z. C. Han, Q. Zhao, R. Yang, G. Chen, and R. C. Zhao. 2006. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions. Biochem. Biophys. Res. Commun. 347: 12-21.   DOI
19 Rid, R., N. Schiefermeier, I. Grigoriev, J. V. Small, and I. Kaverina. 2005. The last but not the least: The origin and significance of trailing adhesions in fibroblastic cells. Cell Motil. Cytoskeleton 61: 161-171.   DOI
20 Ridley, A. J., M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons, and A. R. Horwitz. 2003. Cell migration: Integrating signals from front to back. Science 302: 1704-1709.   DOI
21 Wang, K., J. F. Ash, and S. J. Singer. 1975. Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells. Proc. Natl. Acad. Sci. USA 72: 4483-4486.   DOI
22 Peura, M., J. Bizik, P. Salmenpera, A. Noro, M. Korhonen, T. Patila, A. Vento, A. Vaheri, A.; Alitalo, R.; Vuola, J. A. Harjula, and E. Kankuri. 2009. Bone marrow mesenchymal stem cells undergo nemosis and induce HK wound healing utilizing the HGF/c-Met/PI3K pathway. Wound Repair Regen. 17: 569-577.   DOI
23 Shephard, P., G. Martin, S. Smola-Hess, G. Brunner, T. Krieg, and H. Smola. 2004. Myofibroblast differentiation is induced in HK-fibroblast co-cultures and is antagonistically regulated by endogenous transforming growth factor beta and interleukin-1. Am. J. Pathol. 164: 2055-2066.   DOI
24 Sato, M., D. Sawamura, S. Ina, T. Yaguchi, K. Hanada, and I. Hashimoto. 1999. In vivo introduction of the interleukin 6 gene into human HKs: Induction of epidermal proliferation by the fully spliced form of interleukin 6, but not by the alternatively spliced form. Arch. Dermatol. Res. 291: 400-404.   DOI
25 Werner, S. T. Krieg, and H. Smola. 2007. HK-fibroblast interactions in wound healing. J. Invest. Dermatol. 127: 998-1008.   DOI
26 Wright, C. S., M. A. Van Steensel, M. B. Hodgins, and P. E. Martin. 2009. Connexin mimetic peptidesimprove cell migration rates of human epidermal HKs and dermal fibroblasts in vitro. Wound Repair Regen. 17: 240-249.   DOI
27 Xia, W., T. T. Phan, I. J. Lim, M. T. Longaker, and G. P. Yang. 2004. Complex epithelial-mesenchymal interactions modulate transforming growth factor-beta expression in keloid-derived cells. Wound Repair Regen. 12: 546-556.   DOI
28 Zhang, L., M. Deng, R. Parthasarathy, L. Wang, M. Mongan, J. D. Molkentin, Y. Zheng, Y. Xia. 2005. MEKK1 transduces activin signals in HKs to induce an actin stress fiber formation and migration. Mol. Cell Biol. 25: 60-65.   DOI