• Title/Summary/Keyword: HuC

Search Result 672, Processing Time 0.03 seconds

Development and Application of Elementary School STEAM Program using Drone (드론을 활용한 초등학교 수학 융합 자료 개발 및 적용 결과)

  • Yoon, GyeongRan;Kim, Ju Hu;Huh, Nan;Ko, Ho Kyoung
    • Education of Primary School Mathematics
    • /
    • v.20 no.3
    • /
    • pp.225-235
    • /
    • 2017
  • The study in this paper considers how elementary school students' interest in mathematics and STEAM literacy could be promoted by conjoining the learning of mathematics with the learning of drone topics. Survey instrument was developed to measure student attitudes toward mathematics and science subjects and to evaluate student beliefs on learning mathematics embedded in science topics. Data were collected from elementary school students by administering pre- and post-tests: students were intervened with examples of math problems embedded in certain science contexts. The findings indicate that elementary school students' experience of solving mathematics problems embedded in science contexts positively affects the promotion of their attitudes toward, beliefs on science subjects and science and engineering career path selection. We hope that the mathematics program using the drone will be used in the classroom for STEAM.

Mind Bomb-Binding Partner RanBP9 Plays a Contributory Role in Retinal Development

  • Yoo, Kyeong-Won;Thiruvarangan, Maivannan;Jeong, Yun-Mi;Lee, Mi-Sun;Maddirevula, Sateesh;Rhee, Myungchull;Bae, Young-Ki;Kim, Hyung-Goo;Kim, Cheol-Hee
    • Molecules and Cells
    • /
    • v.40 no.4
    • /
    • pp.271-279
    • /
    • 2017
  • Ran-binding protein family member, RanBP9 has been reported in various basic cellular mechanisms and neuropathological conditions including schizophrenia. Previous studies have reported that RanBP9 is highly expressed in the mammalian brain and retina; however, the role of RanBP9 in retinal development is largely unknown. Here, we present the novel and regulatory roles of RanBP9 in retinal development of a vertebrate animal model, zebrafish. Zebrafish embryos exhibited abundant expression of ranbp9 in developing brain tissues as well as in the developing retina. Yeast two-hybrid screening demonstrated the interaction of RanBP9 with Mind bomb, a component of Notch signaling involved in both neurogenesis and neural disease autism. The interaction is further substantiated by co-localization studies in cultured cells. Knockdown of ranbp9 resulted in retinal dysplasia with defective proliferation of retinal cells, downregulation of neuronal differentiation marker huC, elevation of neural proliferation marker her4, and alteration of cell cycle marker p57kip2. Expression of the $M{\ddot{u}}ller$ glial cell marker glutamine synthase was also affected in knockdown morphants. Our results suggest that Mind bomb-binding partner RanBP9 plays a role during retinal cell development of zebrafish embryogenesis.

Energy-efficient Routing in MIMO-based Mobile Ad hoc Networks with Multiplexing and Diversity Gains

  • Shen, Hu;Lv, Shaohe;Wang, Xiaodong;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.700-713
    • /
    • 2015
  • It is critical to design energy-efficient routing protocols for battery-limited mobile ad hoc networks, especially in which the energy-consuming MIMO techniques are employed. However, there are several challenges in such a design: first, it is difficult to characterize the energy consumption of a MIMO-based link; second, without a careful design, the broadcasted RREP packets, which are used in most energy-efficient routing protocols, could flood over the networks, and the destination node cannot decide when to reply the communication request; third, due to node mobility and persistent channel degradation, the selected route paths would break down frequently and hence the protocol overhead is increased further. To address these issues, in this paper, a novel Greedy Energy-Efficient Routing (GEER) protocol is proposed: (a) a generalized energy consumption model for the MIMO-based link, considering the trade-off between multiplexing and diversity gains, is derived to minimize link energy consumption and obtain the optimal transmit model; (b) a simple greedy route discovery algorithm and a novel adaptive reply strategy are adopted to speed up path setup with a reduced establishment overhead; (c) a lightweight route maintenance mechanism is introduced to adaptively rebuild the broken links. Extensive simulation results show that, in comparison with the conventional solutions, the proposed GEER protocol can significantly reduce the energy consumption by up to 68.74%.

Overexpression of afsR and Optimization of Metal Chloride to Improve Lomofungin Production in Streptomyces lomondensis S015

  • Wang, Wei;Wang, Huasheng;Hu, Hongbo;Peng, Huasong;Zhang, Xuehong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.672-680
    • /
    • 2015
  • As a global regulatory gene in Streptomyces, afsR can activate the biosynthesis of many secondary metabolites. The effect of afsR on the biosynthesis of a phenazine metabolite, lomofungin, was studied in Streptomyces lomondensis S015. There was a 2.5-fold increase of lomofungin production in the afsR-overexpressing strain of S. lomondensis S015 N1 compared with the wild-type strain. Meanwhile, the transcription levels of afsR and two important genes involved in the biosynthesis of lomofungin (i.e., phzC and phzE) were significantly upregulated in S. lomondensis S015 N1. The optimization of metal chlorides was investigated to further increase the production of lomofungin in the afsR-overexpressing strain. The addition of different metal chlorides to S. lomondensis S015 N1 cultivations showed that CaCl2, FeCl2, and MnCl2 led to an increase in lomofungin biosynthesis. The optimum concentrations of these metal chlorides were obtained using response surface methodology. CaCl2 (0.04 mM), FeCl2 (0.33 mM), and MnCl2 (0.38 mM) gave a maximum lomofungin production titer of 318.0 ± 10.7 mg/l, which was a 4.1-fold increase compared with that of S. lomondensis S015 N1 without the addition of a metal chloride. This work demonstrates that the biosynthesis of phenazine metabolites can be induced by afsR. The results also indicate that metal chlorides addition might be a simple and useful strategy for improving the production of other phenazine metabolites in Streptomyces.

Pig large tumor suppressor 2 (Lats2), a novel gene that may regulate the fat reduction in adipocyte

  • Liu, Qiuyue;Gu, Xiaorong;Zhao, Yiqiang;Zhang, Jin;Zhao, Yaofeng;Meng, Qingyong;Xu, Guoheng;Hu, Xiaoxiang;Li, Ning
    • BMB Reports
    • /
    • v.43 no.2
    • /
    • pp.97-102
    • /
    • 2010
  • Clenbuterol, a $\beta_2$-adrenoceptor agonist, has been proven to be a powerful repartition agent that can decrease fat deposition. Based on results from our previous cDNA microarray experiment of pig clenbuterol administration, a novel up-regulated EST was full-length cloned (4859 bp encoding 1041 amino acids) and found to be the pig homolog of large tumor suppressor 2 (Lats2). We mapped pig Lats2 to chromosome 11p13-14 by using FISH, and western blotting demonstrated that pig Lats2 protein was most abundant in adipose. In Drosophila, Lats2 ortholog was reported as a key component of the Hippo pathway which regulates cell differentiation and growth. Here, we show that pig Lats2 exhibit inverted expression to YAP1, another member of the Hippo pathway which positively regulates cell growth and proliferation, during the differentiation of 3T3-L1 preadipocytes. Our results suggested that Lats2 may involve in Hippo pathway regulating the fat reduction by inhibiting adipocyte differentiation and growth.

EMS-induced Mutagenesis for C18 Unsaturated Fatty Acids in Rapeseed (Brassica napus L.)

  • Lee, Yong-Hwa;Kim, Kwang-Soo;Jang, Young-Seok;Choi, In-Hu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.128-133
    • /
    • 2014
  • Rapeseed (Brassica napus L.) oil with high oleic acid content is of great interest for both food and non-food uses. The 'Tamla' variety, characterized by oleic acid content of approximately 69%, was treated with 1% ethyl methane sulfonate (EMS) to induce mutations in the fatty acid biosynthesis pathway. $M_1$ plants were selfed and subsequent generations ($M_2$, $M_3$, and $M_4$ mutants) were analyzed to identify mutants having increased levels of oleic acid. $M_2$ mutants showed oleic acid content ranging from 13.5% to 76.9% with some mutants (TR-458 and TR-544) having up to 74.7% and 76.9% oleic acid, which was an increase of nearly 5% and 7%, respectively, compared to untreated cv 'Tamla'. We selected two $M_3$ mutants with >75% oleic acid content. One mutant (TR-458-2) had increased oleic acid (75.9%) and decreased linoleic acid (12.5%) and linolenic acid (4.4%) contents. The other (TR-544-1) showed increased oleic acid content (75.7%) and decreased linoleic acid (13.5%) and linolenic acid (3.3%) contents. The accumulation or reduction of oleic acid content in the selected $M_4$ mutants was also accompanied by a simultaneous decrease or increase in linoleic and linolenic acid contents. The high-oleic lines could be utilized further in breeding programs for improvement of rapeseed oil quality.

Cloning and Spatiotemporal Expression Analysis of Bombyx mori elav, an Embryonic Lethal Abnormal Visual Gene

  • Wang, Geng-Xian;Liu, Ying;Sim, Yang-Hu;Zhang, Sheng-Xiang;Xu, Shi-Qing
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.18 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • Embryonic lethal abnormal visual (elav) is a lethal gene in Drosophila inducing the abnormal development and function of nervous system. We cloned a Bm-elav gene by bioinformatics and biological experiment, based on sequence of ELAV protein and dbEST of Bombyx mori. The full-length of Bm-elav cDNA is 1498 bp, contains a 906 bp open read frame (ORF) encoding a precursor of 301 amino acid residues with a calculated molecular weight of 34 kDa and pI of 8.99. Bm-ELAV protein precursor contains three RNA recognition motifs (RRM) in $24{\sim}91$, $110{\sim}177$ and $222{\sim}295$ bit amino acid residues respectively, and belongs to RNA-binding protein family. Bm-ELAV shared varying positives, ranging from 56% to 60% (Identities from 41% to 45%), with RRM from other species of Xenopus tropicalis, Apis mellifera, Tribolium castaneum, Branchiostoma belcheri and Drosophila. Gene localization indicated that Bm-elav is a single-copy gene, gene mapping within 12-chromosome from 7916.68 knt to 7918.16 knt region of nscaf2993. Spatiotemporal expressions pattern analysis revealed that Bm-elav expressed higher in most tested tissues and developmental stages in whole generation, such as silk gland, fat body, midgut, hemopoietic organ and ovary, but almost no expression in terminated diapause eggs. This suggested that the expression of Bm-elav in early developmental embryonic stages might induce abnormal development like in Drosophila. Cloning of the Bm-elav gene enables us to test its potential role in controlling pests by transferring the gene into field lepidopteran insects in the future.

Biotransformation of Ginsenoside Rb1 to Prosapogenins, Gypenoside XVII, Ginsenoside Rd, Ginsenoside F2, and Compound K by Leuconostoc mesenteroides DC102

  • Quan, Lin-Hu;Piao, Jin-Ying;Min, Jin-Woo;Kim, Ho-Bin;Kim, Sang-Rae;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.344-351
    • /
    • 2011
  • Ginsenoside $Rb_1$ is the main component in ginsenosides. It is a protopanaxadiol-type ginsenoside that has a dammarane-type triterpenoid as an aglycone. In this study, ginsenoside $Rb_1$ was transformed into gypenoside XVII, ginsenoside Rd, ginsenoside $F_2$ and compound K by glycosidase from Leuconostoc mesenteroides DC102. The optimum time for the conversion was about 72 h at a constant pH of 6.0 to 8.0 and the optimum temperature was about $30^{\circ}C$. Under optimal conditions, ginsenoside $Rb_1$ was decomposed and converted into compound K by 72 h post-reaction (99%). The enzymatic reaction was analyzed by highperformance liquid chromatography, suggesting the transformation pathway: ginsenoside $Rb_1$ ${\rightarrow}$ gypenoside XVII and ginsenoside Rd${\rightarrow}$ginsenoside $F_2{\rightarrow}$compound K.

Antimicrobial Efficacy of the Disinfectant Solution Nanoxil® Against Fish Pathogenic Bacteria

  • Cha, Chun-Nam;Jung, Won-Chul;Lee, Yeo-Eun;Yoo, Chang-Yeul;Kim, Suk;Lee, Hu-Jang
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.6
    • /
    • pp.496-501
    • /
    • 2010
  • Fish pathogenic bacteria are a considerable danger of farmed fish and a source of economic loss in the fish farming industry. In this study, $Nanoxil^{(R)}$ was compared to hydrogen peroxide and a silver colloid in terms of disinfection efficacy against E. tarda, V. anguillarum and S. iniae. A bactericidal efficacy test conducted by a broth dilution method was used to determine the lowest effective dilution of the disinfectant following exposure to test bacteria for 30 min at $4^{\circ}C$. $Nanoxil^{(R)}$ and test bacteria were diluted with distilled water (DW), hard water (HW) or an organic matter suspension (OM) according to the treatment condition. Under the OM condition, the bactericidal activity of $Nanoxil^{(R)}$ against E. tarda exhibited a lowered efficacy compared to that under the DW and HW conditions. $Nanoxil^{(R)}$ at 500 fold (dilutions on) under all of the conditions demonstrated a high bactericidal efficacy against S. iniae. As $Nanoxil^{(R)}$ possess bactericidal efficacy against fish pathogenic bacteria such as E. tarda, V. anguillarum and S. iniae, this disinfectant solution can be used to limit the spread of fish bacterial diseases.

Gene expression profiling of SH -SY5Y cells in neuroprotective effect of total ginsenosides on H202 induced neurotoxicity (인간 신경모세포종 SH-SY5Y에서 인삼(人蔘) total ginsenosides의 신경보호 기능에 관련된 유전자 발현 양상에 대한 연구)

  • Lee, Seung-Gi;Chai, Young-Gyu;Jung, Kyoung-Hwa;Kim, Ji-Hyouck;Hu, Yong-Suk
    • Journal of Oriental Neuropsychiatry
    • /
    • v.18 no.1
    • /
    • pp.95-110
    • /
    • 2007
  • Objective : The purpose of this study was to investigate molecular basis of neuroprotective effect in total ginsenosides. After H202 induced neurotoxicity, gene expression profiling of SH-SY5Y neuroblastoma cells treated by total ginsenosides is analyzed. Method : After SH-SY5Y cells were cultured, they were damaged by H202 induced oxidative stress. After twenty four hours, experimental group is treated by total ginsenosides and control group is treated by 0.9% saline. A high density cDNA microarray chip is used to analyze the gene expression profiling of SH-SY5Y cells. The Significance Analysis of Microarray method is used for identifying genes on a microarray. Results : 1. According to the results of microarray experiment, 17 genes were up-regulated, 38 genes were down-regulated. 2. Expression of OPHNl, KTANl, ATM, PRKCE, MAPKs genes associated with cell proliferation, neural growth, and the prevention of apoptosis were increased. 3. Change of EPX gene was the greatest among all genes. EPX gene associated with oxidative stress, and tumor suppressor gene ADAM11 were decreased. Conclusion : According to this study, molecular basis of neuroprotective effect of total ginsenosides is as followings: the increase of gene expression associated with cell proliferation, neuron growth, the prevention of apoptotsis and decrease of gene expression associated with oxidative stress and tumor suppressor.

  • PDF