• Title/Summary/Keyword: Hot-wire

Search Result 544, Processing Time 0.026 seconds

Constriction of a hot-wire anemometer (熱線流速計의 試作硏究)

  • 이규한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.779-786
    • /
    • 1986
  • Hot-wire anemometer with constant temperature hot-wire anemometer bridge, linearizer, D.C. stabilization electric power source and square-wave generater has been constructed for trial and the test has been carried out. As a result the test showed the overall frequency response of 6KHz over the change of air flow and the noise of approximately 1cm/s in an air flow of 10m/s. The accuracy of the lienarizer stands comparison with the existing anemometer and turned out to be relatively good operational characteristics.

An Experimental Study of the Air Flow Rate Characteristics at Steady State in an SI Engine (SI엔진의 정상상태 유량 특성에 관한 실험적 연구)

  • 박경석;고상근;노승탁;이종화
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.6
    • /
    • pp.1-12
    • /
    • 1997
  • In an SI engine, the characteristics of the air flow is important not only for the design of the intake system geometry but also for the accurate measurement of the induction air mass. In this study, an air flow rate measurement using the ultrasonic flow meter and hot wire flow meter was conducted at the upstream of the intake port and the throttle. At the upstream of the intake port, the pulsating flow into the cylinder affected by the pressure wave was detected directly with the flow meters instead of pressure sensors. At the upstream of the throttle, the reverse flow phenomena were showed by comparing the flow pattern measured by the hot wire air flow meter and the ultrasonic air flow meter. The results of this study can be used for the analysis of the tuning effect in the intake manifold and estimation of the error in real time measurement for the air flow rate.

  • PDF

Analysis of the Flow of a Circular Nozzle using a slant Hot-Wire (단일 경사열선을 이용한 원형노즐의 유동해석)

  • Chung, Wui-Jun;Oh, Sang-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.17-23
    • /
    • 2009
  • The program using $C/C^{++}$ which could calculate 3-D velocities from data of the flowfield obtained by a slant hot-wire has been developed. The characteristic of the exit flowfield of a circular nozzle with a curved surface was investigated. From the result, the inward-flow was verified at adjacent layers near the boundary of the exit flowfield of a circular nozzle in Id and outward-flow was sensed gradually from down-flow of Id. Similarity of the nondimensional velocity profile properlly could be obtained except near Id and the virtual origin reasonably could be obtained.

Temperature Compensation of Hot-Wire Anemometer with Photoconductive Cell (광도전성저항을 이용한 열선유속계의 온도보상)

  • Lee, Sin-Pyo;Go, Sang-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.295-303
    • /
    • 1996
  • A new temperature compensation technique for hot-wire anemometer is proposed in this article. In contrast to the available compensation techniques, a photoconductive cell is introduced here as a variable resistor in the bridge. The major advantage of adopting an active component such as photoconductive cell is that temperature compensation can be achieved by using any kind of temperature sensors, once the output of temperature sensor is given as a voltage. Thereby, the temperature compensation can be made automatically and intelligently by a computer software or a hardware device. Validation experiments using a photoconductive cell with a thermocouple-thermometer are conducted in the temperature range from 3$0^{\circ}C$ to 5$0^{\circ}C$ and the velocity ranges from 8 m/s to 18 m/s.

Wake Analysis of the HAWT by Windtunnel Test (실험을 통한 풍력발전기의 후류구조 분석)

  • Park, Ji-Woong;Kim, Ho-Geon;Shin, Hyung-Ki;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.273-276
    • /
    • 2006
  • To generate electricity from wind energy, wind turbine generally has a rotor blade. Since this rotor blade is a kind of the rotating machinery, the wake from the rotor is very Important role in the side of the aerodynamic performances. Thus the study about wake is essential to analyze wind turbine aerodynamics. In this study wake characteristics are analyzed by hot-wire probe in the K.A.F.A(Korea Air Force Academy) wind tunnel. It is possible to analyze the wake characteristics by hot-wire probe from acquiring the velocity fluctuations at given positions in the flow. This velocity data are arranged by trigger signal at same azimuth of the blade in periodic manner of the rotor blade. From this various wake characteristics are found : radial and axial position of the tip vortex, vortex core characteristics in the flow etc.

  • PDF

Interface Passivation Properties of Crystalline Silicon Wafer Using Hydrogenated Amorphous Silicon Thin Film by Hot-Wire CVD (열선 CVD법으로 증착된 비정질 실리콘 박막과 결정질 실리콘 기판 계면의 passivation 특성 분석)

  • Kim, Chan-Seok;Jeong, Dae-Young;Song, Jun-Yong;Park, Sang-Hyun;Cho, Jun-Sik;Yoon, Kyoung-Hoon;Song, Jin-Soo;Kim, Dong-Hwan;Yi, Jun-Sin;Lee, Jeong-Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.172-175
    • /
    • 2009
  • n-type crystalline silicon wafers were passivated with intrinsic a-Si:H thin films on both sides using HWCVD. Minority carrier lifetime measurement was used to verify interface passivation properties between a-Si:H thin film and crystalline Si wafer. Thin film interface characteristics were investigated depending on $H_2/SiH_4$ ratio and hot wire deposition temperature. Vacuum annealing were processed after deposition a-Si:H thin films on both sides to investigate thermal effects from post process steps. We noticed the effect of interface passivation properties according to $H_2/SiH_4$ ratio and hot wire deposition temperature, and we had maximum point of minority carrier lifetime at H2/SiH4 10 ratio and $1600^{\circ}C$ wire temperature.

  • PDF

Fast and Low Temperature Deposition of Polycrystalline Silicon Films by Hot Wire CVD (Hot Wire CVD를 이용한 다결정 Si 박막의 고속 저온 증착)

  • Lee, Jeong-Chul;Kang, Ki-Whan;Kim, Seok-Ki;Yoon, Kyung-Hoon;Song, Jin-Soo;Park, I-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1427-1429
    • /
    • 2001
  • Polycrystalline silicon(poly-Si) films are deposited on low temperature glass substrate by Hot-Wire CVD(HWCVD). The structural properties of the poly-Si films are strongly dependent on the wire temperature($T_w$). The films deposited at high $T_w$ of 2000$^{\circ}C$ have superior crystalline properties; average lateral grain sizes are larger than $1{\mu}m$ and there at·e no vertical grain boundaries. The surface of the high $T_w$ samples are naturally textured like pyramid shape. These large grain size and textured surface are believed to give high current density when applied to solar cells. However, the poly-si films are structurally porous and contains high defect density, by which high concentration of C and O resulted within the films by air-penetration after removed from chamber.

  • PDF

Measurement of turbulent flow characteristics of a rectangular duct with a 180.deg. bend by hot wire anemometer (열선유속계에 의한 180.deg.곡관을 갖는 직사각 단면덕트에서의 난류유동 특성의 측정)

  • 박호영;유석재;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.734-746
    • /
    • 1990
  • Velocities and Reynolds stresses in 3-dimensional turbulent flow in rectangular ducts with a 180.deg. bend were measured by hot wire anemometer. Slant wire was rotated to 4 directions and I type wire was rotated to 2 directions and the voltage outputs of them were combined to obtain the mean velocities and Reynolds stresses. Flow characteristics in the 1.5:1 and 2:1 cross secioned 180.deg. bend were measured and the results were compared with the data from Moon for the square sectioned 180.deg. bend flow. Flows in rectangular sectioned 180.deg. bend show the reduction in secondary flow and therefore the reduction of double maximum in local mean velocities.

Effect of Temperature Variations on Heat Transfer Coefficient in Crossflow over a Circular Cylinder (온도변화가 실린더 주위 열전달계수에 미치는 영향에 관한 실험적 연구)

  • Kauh, S.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.137-145
    • /
    • 1992
  • coefficient precisely, experiments were carried out in three categories which contain the regime of (1) constant wire temperature (2) constant fluid temperature (3) constant temperature difference between wire and fluid. Measurements were made with electrically heated circular tungsten wire placed normal to air stream at the exit of jet. Heat transfer coefficient was increased with wire temperature increasing and decreased by fluid temperaure increasing and was not changed with varying both temperature if their difference were kept constant.

  • PDF

A Study on the Plasma Enhanced Hot-wire CVD Grown Miorocrystalline Silicon Films for Photovoltaic Device Applications (태양전지 응용을 위한 플라즈마 열선 화학기상증착법으로 성장한 미세결정 실리콘에 관한 연구)

  • 유진수;임동건;고재경;박중현;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.632-635
    • /
    • 2001
  • Microcrystalline Si films have been deposited by using five W-wire filaments of 0.5 mm diameter for hot-wire chemical vapor deposition (HWCVD). We compared the HWCVD grown films with the film exposed to transformer couple plasma system for the modification of seed layer. W-wire filament temperature was maintained below 1600$^{\circ}C$ to avoid metal contamination by thermal evaporation at the filament. Deposition conditions were varied with H$_2$dilution ratio, with and without plasma treatment. From the Raman spectra analysis, we observed that the film crystallization was strongly influenced by the H$_2$dilution ratio and weakly depended on the distance between the wire and a substrate. We were able to achieve the crystalline volume fraction of about 70% with an SiH$_4$/H$_2$ratio of 1.3%, a wire temperature of 1514$^{\circ}C$, a substrate separation distance of 4cm, and a chamber pressure of 38 mTorr. We investigated the influence of ${\mu}$c-Si film properties by using a plasma treatment. This article also deals with the influence of the H$_2$dilution ratio in crystallization modification.

  • PDF