• Title/Summary/Keyword: Host-pathogen

Search Result 417, Processing Time 0.027 seconds

IVET-based Identification of Virulence Factors in Vibrio vulnificus MO6-24/O

  • Lee, Ko-Eun;Bang, Ji-Sun;Baek, Chang-Ho;Park, Dae-Kyun;Hwang, Won;Choi, Sang-Ho;Kim, Kum-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.234-243
    • /
    • 2007
  • Vibrio vulnificus is an opportunistic pathogen that causes septicemia in humans. To identify the genes associated with its pathogenicity, in vivo expression technology (IVET) was used to select genes specifically expressed in a host, yet not significantly in vitro. Random lacZ-fusions in the genome of V vulnificus strain MO6-24/O were constructed using an IVET vector, pSG3, which is a suicide vector containing promoterless-aph and -lacZ as reporter genes. A total of ${\sim}18,000$ resulting library clones were then intraperitoneally injected into BALB/c mice using a colony forming unit (CFU) of $1.6{\times}10^6$. Two hours after infection, kanamycin was administered at $200{mu}g$ per gram of mouse weight. After two selection cycles, 11 genes were eventually isolated, which were expressed only in the host. Among these genes, VV20781 and VV21007 exhibiting a homology to a hemagglutinin gene and tolC, respectively, were selected based on having the highest frequency. When compared to wild-type cells, mutants with lesions in these genes showed no difference in the rate of growth rate, yet a significant decrease in cytotoxicity and the capability to form a biofilm.

Virulence Differentiation of Eight Turnip mosaic virus Isolates Infecting Cruciferous Crops

  • Choi, Hong-Soo;Sohn, Seong-Han;Yoon, Moo-Kyoung;Cheon, Jeong-Uk;Kim, Jeong-Soo;Were, Hassan Karakacha;Cho, Jang-Kyung;Kim, Kook-Hyung;Takanami, Yoichi
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.369-376
    • /
    • 2005
  • Turnip mosaic virus (TuMV) is an infectious viral pathogen on the cruciferous crops, predominantly Chinese cabbage (Brassica campestris subsp. pekinensis) and radish (Raphanus sativus). On the basis of the symptom development in selective differential hosts from indicator host species, Chinese cabbage and Korean radish inbred lines, the representative eight isolates of TuMV were divided into two major groups/or six types. Group I includes Th 1, Ca-ad7, and Cj-ca2-1 isolates, while group II includes the other isolates (rg-pfl, r 9-10, Rhcql-2, Stock and Mustard). According to the molecular phylogenetic analysis, these isolates, however, divided into two groups and two independent isolates. Phylogenetic analysis indicated that four isolates (Tu 1, r9-10, Stock and Rh-cql-2) formed a distinct phylogenetic group, and the other two isolates (Ca-ad7 and Cj-ca2-1) also formed another group. Mustard and rg-pfl isolates did not seem to have any relationship with these two groups. Taken together, these results indicated that virulence differentiation on host plants, molecular phylogenetic analysis of the nucleotide and the deduced amino acid of TuMV coat proteins did not show any relationship. The multi-resistant lines, Wonyae 20026 and BP058 in Chinese cabbage represent valuable genetic materials that can be used for crucifer breeding programs on TuMV resistance, but not in Korean radish.

C1qa deficiency in mice increases susceptibility to mouse hepatitis virus A59 infection

  • Kim, Han-Woong;Seo, Sun-Min;Kim, Jun-Young;Lee, Jae Hoon;Lee, Han-Woong;Choi, Yang-Kyu
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.36.1-36.12
    • /
    • 2021
  • Background: Mouse hepatitis virus (MHV) A59 is a highly infectious pathogen and starts in the respiratory tract and progresses to systemic infection in laboratory mice. The complement system is an important part of the host immune response to viral infection. It is not clear the role of the classical complement pathway in MHV infection. Objectives: The purpose of this study was to determine the importance of the classical pathway in coronavirus pathogenesis by comparing C1qa KO mice and wild-type mice. Methods: We generated a C1qa KO mouse using CRISPR/Cas9 technology and compared the susceptibility to MHV A59 infection between C1qa KO and wild-type mice. Histopathological and immunohistochemical changes, viral loads, and chemokine expressions in both mice were measured. Results: MHV A59-infected C1qa KO mice showed severe histopathological changes, such as hepatocellular necrosis and interstitial pneumonia, compared to MHV A59-infected wild-type mice. Virus copy numbers in the olfactory bulb, liver, and lungs of C1qa KO mice were significantly higher than those of wild-type mice. The increase in viral copy numbers in C1qa KO mice was consistent with the histopathologic changes in organs. These results indicate that C1qa deficiency enhances susceptibility to MHV A59 systemic infection in mice. In addition, this enhanced susceptibility effect is associated with dramatic elevations in spleen IFN-γ, MIP-1 α, and MCP-1 in C1qa KO mice. Conclusions: These data suggest that C1qa deficiency enhances susceptibility to MHV A59 systemic infection, and activation of the classical complement pathway may be important for protecting the host against MHV A59 infection.

Evaluation of Bacterial Spot Disease of Capsicum annuum L. in Drought Stress Environment by High Temperature (온도변화에 따른 건조 스트레스 환경에서 고추 세균점무늬병 발생 영향)

  • Jang, Jong-Ok;Kim, Byung-Hyuk;Lee, Jung-Bok;Joa, Jae-Ho;Koh, Sangwook
    • Research in Plant Disease
    • /
    • v.25 no.2
    • /
    • pp.62-70
    • /
    • 2019
  • The global warming by increased $CO_2$ will effect of plant pathogenic microorganisms and resistance of host plants, and it is expected to affect host-pathogen interactions. This study used Capsicum annuum L. and Xanthomonas euvesicatoria, a pathogenic bacteria of pepper, to investigate interactions between hosts and pathogens in a complex environment with increasedcultivation temperature and drought stress. As a result, the bacterial spot disease of C. annuum L. caused by X. euvesicatoria was $35^{\circ}C$ higher than $25^{\circ}C$. In addition, the effect on water potential on bacterial spot disease was much greater water potential -150 kPa than -30 kPa. The disease progress and severity higher than water potential -30 kPa. This result will useful for understanding interaction with red pepper and X. euvesicatoria under the complex environment with increased cultivation temperature and in water potential -150 kPa drought stress in the future.

Characteristics Comparisons of Edwardsiella tarda Isolated from Cultured Olive Flounder and Eel (양식넙치와 뱀장어에서 분리된 Edwardsiella tarda의 특성 비교)

  • Kim, Eunheui
    • Journal of fish pathology
    • /
    • v.34 no.1
    • /
    • pp.31-38
    • /
    • 2021
  • The objective of this study was to determine comparative biochemical characteristics and RAPD (random amplified polymorphic DNA) profiles of 18 strains of Edwardsiella tarda isolated from cultured olive flounder (Paralichthys olivaceus) and eel (Anguilla spp) that showed diseases between 1996 and 2010 in Korea. In terms of biochemical properties, they showed four patterns with differences in citrate degradation and production of H2S and indole. All strains were identified as E. tarda. Characteristics of isolates were not classified according to their host. As a result of PCR with E. tarda-specific primer, EDtT, the same band of about 270 bp was detected in all 18 isolates. However, no specific band was detected in type strains of E. tarda or Edwardsiella ictaluri. As a result of RAPD PCR performed with primer No. 5 and No. 6 of a Ready-To-Go-RAPD kit, the band profile showed clear differences among isolates of olive flounder, isolates of eel, and E. tarda and E. ictaluri type strains. It was possible to organize their characteristics according to the origin of host with possibility to develop tools for pathogen monitoring.

Role of Trehalose Synthesis in Ralstonia syzygii subsp. indonesiensis PW1001 in Inducing Hypersensitive Response on Eggplant (Solanum melongena cv. Senryo-nigou)

  • Laili, Nur;Mukaihara, Takafumi;Matsui, Hidenori;Yamamoto, Mikihiro;Noutoshi, Yoshiteru;Toyoda, Kazuhiro;Ichinose, Yuki
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.566-579
    • /
    • 2021
  • Ralstonia syzygii subsp. indonesiensis (Rsi, former name: Ralstonia solanacearum phylotype IV) PW1001, a causal agent of potato wilt disease, induces hypersensitive response (HR) on its non-host eggplant (Solanum melongena cv. Senryo-nigou). The disaccharide trehalose is involved in abiotic and biotic stress tolerance in many organisms. We found that trehalose is required for eliciting HR on eggplant by plant pathogen Rsi PW1001. In R. solanacearum, it is known that the OtsA/OtsB pathway is the dominant trehalose synthesis pathway, and otsA and otsB encode trehalose-6-phosphate (T6P) synthase and T6P phosphatase, respectively. We generated otsA and otsB mutant strains and found that these mutant strains reduced the bacterial trehalose concentration and HR induction on eggplant leaves compared to wild-type. Trehalose functions intracellularly in Rsi PW1001 because addition of exogenous trehalose did not affect the HR level and ion leakage. Requirement of trehalose in HR induction is not common in R. solanacearum species complex because mutation of otsA in Ralstonia pseudosolanacearum (former name: Ralstonia solanacearum phylotype I) RS1002 did not affect HR on the leaves of its non-host tobacco and wild eggplant Solanum torvum. Further, we also found that each otsA and otsB mutant had reduced ability to grow in a medium containing NaCl and sucrose, indicating that trehalose also has an important role in osmotic stress tolerance.

Multi-epitope vaccine against drug-resistant strains of Mycobacterium tuberculosis: a proteome-wide subtraction and immunoinformatics approach

  • Md Tahsin Khan;Araf Mahmud;Md. Muzahidul Islam;Mst. Sayedatun Nessa Sumaia;Zeaur Rahim;Kamrul Islam;Asif Iqbal
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.42.1-42.23
    • /
    • 2023
  • Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, one of the most deadly infections in humans. The emergence of multidrug-resistant and extensively drug-resistant Mtb strains presents a global challenge. Mtb has shown resistance to many frontline antibiotics, including rifampicin, kanamycin, isoniazid, and capreomycin. The only licensed vaccine, Bacille Calmette-Guerin, does not efficiently protect against adult pulmonary tuberculosis. Therefore, it is urgently necessary to develop new vaccines to prevent infections caused by these strains. We used a subtractive proteomics approach on 23 virulent Mtb strains and identified a conserved membrane protein (MmpL4, NP_214964.1) as both a potential drug target and vaccine candidate. MmpL4 is a non-homologous essential protein in the host and is involved in the pathogen-specific pathway. Furthermore, MmpL4 shows no homology with anti-targets and has limited homology to human gut microflora, potentially reducing the likelihood of adverse effects and cross-reactivity if therapeutics specific to this protein are developed. Subsequently, we constructed a highly soluble, safe, antigenic, and stable multi-subunit vaccine from the MmpL4 protein using immunoinformatics. Molecular dynamics simulations revealed the stability of the vaccine-bound Tolllike receptor-4 complex on a nanosecond scale, and immune simulations indicated strong primary and secondary immune responses in the host. Therefore, our study identifies a new target that could expedite the design of effective therapeutics, and the designed vaccine should be validated. Future directions include an extensive molecular interaction analysis, in silico cloning, wet-lab experiments, and evaluation and comparison of the designed candidate as both a DNA vaccine and protein vaccine.

Structure of SARS-CoV-2 Spike Glycoprotein for Therapeutic and Preventive Target

  • Jaewoo Hong;Hyunjhung Jhun;Yeo-Ok Choi;Afeisha S. Taitt;Suyoung Bae;Youngmin Lee;Chang-seon Song;Su Cheong Yeom;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.8.1-8.17
    • /
    • 2021
  • The global crisis caused by the coronavirus disease 2019 (COVID-19) led to the most significant economic loss and human deaths after World War II. The pathogen causing this disease is a novel virus called the severe acute respiratory syndrome coronavirus 2 (SARSCoV-2). As of December 2020, there have been 80.2 million confirmed patients, and the mortality rate is known as 2.16% globally. A strategy to protect a host from SARS-CoV-2 is by suppressing intracellular viral replication or preventing viral entry. We focused on the spike glycoprotein that is responsible for the entry of SARS-CoV-2 into the host cell. Recently, the US Food and Drug Administration/EU Medicines Agency authorized a vaccine and antibody to treat COVID-19 patients by emergency use approval in the absence of long-term clinical trials. Both commercial and academic efforts to develop preventive and therapeutic agents continue all over the world. In this review, we present a perspective on current reports about the spike glycoprotein of SARS-CoV-2 as a therapeutic target.

Development of a Loop-mediated Isothermal Amplification Detection Assay for Verticillium dahliae Infection in Chrysanthemum (국화에 발생하는 반쪽시들음병균 Verticillium dahliae 검출용 등온 증폭법 개발)

  • Back, Chang-Gi;Park, Mi-Jeong;Han, Kyung-Sook;Park, Jong-Han
    • The Korean Journal of Mycology
    • /
    • v.47 no.4
    • /
    • pp.437-441
    • /
    • 2019
  • Verticillium wilt disease is caused by a fungal plant pathogen Verticillium dahliae, which attacks commercial crops such as chrysanthemum. The conventional methods so far used to identify this fungal pathogen require high expertise and are time-consuming. Therefore, in this study, we developed an assay for the rapid and specific detection of V. dahliae infection using loop-mediated isothermal amplification (LAMP) method. For this assay, four primers for LAMP were designed for targeting cellulose-growth-specific protein partial mRNA gene in Verticillium dahliae. Under standard condition, the optimum reaction temperature for amplification is around 60 ℃ within 60 minutes. This LAMP assay was designed to amplify only present in V. dahliae. When this LAMP assay applied to the DNAs for four other soil-borne fungi and host plants, no amplification was detected. Therefore, this LAMP assay we developed for V. dahliae is expected to do detection at the early stage of its infection. The fast and reliable detection method will allow us to develop effective management system to monitor and control infection of this pathogen in chrysanthemum plant.

Distribution of lasmodiophora brassicae Causing clubroot Disease of Chinese Cabbage in Soil (배추무사마귀병균의 토양내 분포)

  • 김충회;조원대;김홍모
    • Research in Plant Disease
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • Population density of Plasmodiophora brassicae in soil of severely infested fields of Chinese cabbage decreased as soil depth increases. More than 97% of total population was found in surface soil (0-5cm depth), and a few resting spores of the pathogen were also detected in 40 cm-deep soil. the clubroot pathogen was evenly distributed over the surface soil without clustering around a Chinese cabbage plant. Density of P. brassicae in soil at 23 Chinese cabbage fields in Pyongchang, Kangwon province ranged widely from less than 10$^4$resting spores/g soil to above 10$\^$6/ resting spores/g soil. Few or none of P. brassicae was found in virgin soil without any cropping history, intermediate with 0.36-2.75$\times$10$^4$resting spores/g soil in fields of other crops but more than 10 times higher population was found in severely infected Chinese cabbage fields. Density of P. brassicae was highest in the fields of monocropping of crucifers with some exceptions, but was low in rotated fields with corn, rye, medicinal crops or other non-host vegetables. Pathoen density in soil was decreased rapidly when rye or medicinal crops were cultivated after Chinese cabbage, suggesting that survival of clubroot pathogen appears to be influenced greatly by cropping system. The improved method for detecting resting spores of P. brassicae in soil used in this study seemed to be adequate for estimating population density of P. brassicae in soil in aspects of clearer dyeing, increased detecting sensitivity, and simplicity in preparation.

  • PDF