DOI QR코드

DOI QR Code

Evaluation of Bacterial Spot Disease of Capsicum annuum L. in Drought Stress Environment by High Temperature

온도변화에 따른 건조 스트레스 환경에서 고추 세균점무늬병 발생 영향

  • Jang, Jong-Ok (Research Institute for Climate Change and Agriculture, NIHHS, RDA) ;
  • Kim, Byung-Hyuk (Research Institute for Climate Change and Agriculture, NIHHS, RDA) ;
  • Lee, Jung-Bok (Institute for Development of Bio-industrial Materials, BHNBIO Co., LTD.) ;
  • Joa, Jae-Ho (Citrus Research Institute, NIHHS, RDA) ;
  • Koh, Sangwook (Research Institute for Climate Change and Agriculture, NIHHS, RDA)
  • 장종옥 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 김병혁 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 이중복 ((주) 비에이치앤바이오 생물산업소재개발연구소) ;
  • 좌재호 (농촌진흥청 국립원예특작과학원 감귤연구소) ;
  • 고상욱 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소)
  • Received : 2018.10.01
  • Accepted : 2019.06.11
  • Published : 2019.06.30

Abstract

The global warming by increased $CO_2$ will effect of plant pathogenic microorganisms and resistance of host plants, and it is expected to affect host-pathogen interactions. This study used Capsicum annuum L. and Xanthomonas euvesicatoria, a pathogenic bacteria of pepper, to investigate interactions between hosts and pathogens in a complex environment with increasedcultivation temperature and drought stress. As a result, the bacterial spot disease of C. annuum L. caused by X. euvesicatoria was $35^{\circ}C$ higher than $25^{\circ}C$. In addition, the effect on water potential on bacterial spot disease was much greater water potential -150 kPa than -30 kPa. The disease progress and severity higher than water potential -30 kPa. This result will useful for understanding interaction with red pepper and X. euvesicatoria under the complex environment with increased cultivation temperature and in water potential -150 kPa drought stress in the future.

Keywords

SMBRCU_2019_v25n2_62_f0001.png 이미지

Fig. 1. Comparison of red pepper grown under different temperatures and water conditions. Photographics were taken 7 days after combined drought stress and inoculation of X. euvesicatoria. A; 25°C, B; 30°C, C; 35°C.

SMBRCU_2019_v25n2_62_f0002.png 이미지

Fig. 2. Effect of water stress on disease incidance and severity by X. euvesicatoria. **; <0.05, ***; <0.01.

SMBRCU_2019_v25n2_62_f0003.png 이미지

Fig. 3. The disease rate of Capsicum annuum L. according to the temperature and water stress.

SMBRCU_2019_v25n2_62_f0004.png 이미지

Fig. 4. Quantification of X. euvesicatoria under different temperatures and water conditions by the Real-Time PCR. The real time PCR was taken 24 hr after combined drought stress and inoculation of X. euvesicatoria.

SMBRCU_2019_v25n2_62_f0005.png 이미지

Fig. 5. Expression of disease resistance gene CaLRR1 (A), CaPIK1 (B), CaPR10 (C), and CaWRKY1 (D) in C. annuum L. by X. euvesicatoria. The qRT-PCR was taken 24 hr after combined drought stress and inoculation of X. euvesicatoria. *; <0.1, **; <0.05, ***; <0.01.

Table 1. Nucleic acid sequence of oligonucleotide primers used qRT-PCR assay for the disease resistance gene of C. annuum L. in this study

SMBRCU_2019_v25n2_62_t0001.png 이미지

References

  1. Barber, V. A., Juday, G. P. and Finney, B. P. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405: 668-673. https://doi.org/10.1038/35015049
  2. Bettarini, I., Vaccari, F. P. and Miglietta, F. 1998. Elevated $CO_2$ concen trations and stomatal density: observations from 17 plant species growing in a $CO_2$ spring in central Italy. Glob. Chang. Biol. 4: 17-22. https://doi.org/10.1046/j.1365-2486.1998.00098.x
  3. Chakraborty, S., Pangga, I. B., Lupton, J., Hart, L., Room, P. M. and Yates, D. 2000. Production and dispersal of Colletotrichum gloeosporioides spores on Stylosanthes scabra under elevated $CO_2$. Environ. Pollut. 108: 381-387. https://doi.org/10.1016/S0269-7491(99)00217-1
  4. Chakraborty, S., Luck, J., Hollaway, G., Freeman, A., Norton, R., Garrett, K. A. et al. 2008. Impacts of global change on diseases of agricultural crops and forest trees. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 3: 054.
  5. Chaves, M. M. and Oliveira, M. M. 2004. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J. Exp. Bot. 55: 2365-2384. https://doi.org/10.1093/jxb/erh269
  6. Coakley, S. M., Scherm, H. and Chakraborty, S. 1999. Climate change and plant disease management. Annu. Rev. Phytopathol. 37: 399-426. https://doi.org/10.1146/annurev.phyto.37.1.399
  7. Danby, R. K. and Hik, D. S. 2006. Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Glob. Chang. Biol. 13: 437-451. https://doi.org/10.1111/j.1365-2486.2006.01302.x
  8. Durner, J., Shah, J. and Klessig, D. F. 1997. Salicylic acid and disease resistance in plants. Trends Plant Sci. 2: 226-274.
  9. Ecker, J. R. 1995. The ethylene signal transduction pathway in plants. Science 268: 667-675. https://doi.org/10.1126/science.7732375
  10. Eulgem, T., Rushton, P. J., Robatzek, S. and Somssich, I. E. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199-206. https://doi.org/10.1016/S1360-1385(00)01600-9
  11. Hibberd, J. M., Whitbread, R. and Farrar, J. F. 1996. Effect of elevated concentrations of $CO_2$ on infection of barley by Erysiphe graminis. Physiol. Mol. Plant Pathol. 48: 37-53. https://doi.org/10.1006/pmpp.1996.0004
  12. Hipskind, J. D., Nicholson, R. L. and Goldsbrough, P. B. 1996. Isolation of a cDNA encoding a novel leucine-rich repeat motif from Sorghum bicolor inoculated with fungi. Mol. Plant-Microbe. Interact. 9: 819-825. https://doi.org/10.1094/MPMI-9-0819
  13. Jang, J.-O., Kim, B.-H., Moon, D.-G., Koh, S. and Joa, J.-H. 2018. Analysis of bacterial spot disease in red pepper caused by increase of $CO_2$ concentration. Microbiol. Biotechnol. Lett. 46: 77-84. https://doi.org/10.4014/mbl.1708.08006
  14. Jones, C., Robertson, E., Arora, V., Friedlingstein, P., Shevliakova, E., Bopp, L. et al. 2016. Twenty-First-Century compatible $CO_2$ emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. J. Clim. 26: 4398-4413. https://doi.org/10.1175/JCLI-D-12-00554.1
  15. Kilpelainen, A., Peltola, H., Ryyppo, A., Sauvala, K., Laitinen, K. and Kellomaki, S. 2003. Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration. Tree Physiol. 23: 889-897. https://doi.org/10.1093/treephys/23.13.889
  16. Kim, D. S. and Hwang, B. K. 2011. The pepper receptor-like cytoplasmic protein kinase CaPIK1 is involved in plant signaling of defense and cell-death responses. Plant J. 66: 642-655. https://doi.org/10.1111/j.1365-313X.2011.04525.x
  17. Kim, B.-H., Jang, J.-O., Kang, Z., Joa, J. H. and Moon, D.-G. 2017. The microbial diversity analysis of the Korea traditional postfermented tea (Chungtaejeon). Korean J. Microbiol. 53: 170-179. https://doi.org/10.7845/kjm.2017.7049
  18. Korea Meteorological Administration. 2017. Report of global atmosphere watch 2016. Korea Meteorological Administration, Seoul, Korea. 235 pp (in Korean).
  19. Lawlor, D. W. 2002. Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. Ann. Bot. 89: 871-885. https://doi.org/10.1093/aob/mcf110
  20. Lawlor, D. W. and Cornic, G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Platnt Cell Environ. 25: 275-294. https://doi.org/10.1046/j.0016-8025.2001.00814.x
  21. Lawson, T., Oxborough, K., Morison, J. I. and Baker, N. R. 2003. The responses of guard and mesophyll cell photosynthesis to $CO_2$, $O_2$, light, and water stress in arrange of species are similar. J. Exp. Bot. 54: 1743-1752. https://doi.org/10.1093/jxb/erg186
  22. Manning, W. J. and Tiedemann, A. V. 1995. Climate change: potential effects of increased atmospheric carbon dioxide ($CO_2$), ozone ($O_3$), and ultraviolet-B (UV-B) radiation on plant diseases. Environ. Pollut. 88: 219-245. https://doi.org/10.1016/0269-7491(95)91446-R
  23. Mitchell, D. J. and Zentmyer, G. A. 1971. Effect of oxygen and carbon dioxide tensions on growth of several species of Phytophthora. Phyopathology 61: 787-791. https://doi.org/10.1094/Phyto-61-787
  24. Oh, S. K., Baek, K. H., Park, J. M., Yi, S. Y., Yu, S. H., Kamoun, S. et al. 2008. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol. 177: 977-989. https://doi.org/10.1111/j.1469-8137.2007.02310.x
  25. Percy, K. E., Awmack, C. S., Lindroth, R. L., Kubiske, M. E., Kopper, B. J., Isebrands, J. G. et al. 2002. Altered performance of forest pests under atmospheres enriched by $CO_2$ and $O_3$. Nature 420: 403-407. https://doi.org/10.1038/nature01028
  26. Pittman, J. K., Dean, A. P. and Osundeko, O. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102: 17-25. https://doi.org/10.1016/j.biortech.2010.06.035
  27. Rustad, L., Campbell, J., Marion, G., Norby, R., Mitchell, M., Hartley, A. et al. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126: 543-562. https://doi.org/10.1007/s004420000544
  28. Shin, J.-W. and Yun, S.-C. 2010. Elevated $CO_2$ and temperature effects on the incidence of four major chili pepper diseases. Plant Pathol. J. 26: 178-184. https://doi.org/10.5423/PPJ.2010.26.2.178
  29. Shiu, S. H. and Bleecker, A. B. 2001. Receptor-like kinases from Arabidopsis form a monophyletic gene family elated to animal receptor kinases. Proc. Natl. Acad. Sci. U.S.A. 98: 10763-10768. https://doi.org/10.1073/pnas.181141598
  30. Shiu, S. H. and Bleecker, A. B. 2003. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 132: 530-543. https://doi.org/10.1104/pp.103.021964
  31. Statistics Korea. 2018. Crop production statistics 2017. Statistics Korea, Daejeon, Korea. 185 pp (in Korean).
  32. Volder, A., Edwards, E. J., Evans, J. R., Robertson, B. C., Schortemeyer, M. and Gifford, R. M. 2004. Does greater night-time, rather than constant, warming alter growth of managed pasture under under ambient and elevated atmospheric $CO_2$?. New Phytol. 162: 397-411. https://doi.org/10.1111/j.1469-8137.2004.01025.x
  33. Wang, C. S., Huang, J. C. and Hu, J. H. 1999. Characterization of two subclasses of PR-10 transcripts in lily anthers and induction of their genes through separate signal transduction pathways. Plant Mol. Biol. 40: 807-814. https://doi.org/10.1023/A:1006285028495
  34. Xu, Z., Hu, T. and Zhang, Y. 2012. Effects of experimental warming on phenology, growth and gas exchange of treeline birch (Betula utilis) saplings, Eastern Tibetan Plateau, China. Eur. J. For. Res. 131: 811-819. https://doi.org/10.1007/s10342-011-0554-9
  35. Yin, H. J., Liu, Q. and Lai, T. 2008. Warming effects on growth and physiology in the seedlings of the two conifers Picea asperata and Abies faxoniana under two contrasting light conditions. Ecol. Res. 23: 459-469. https://doi.org/10.1007/s11284-007-0404-x
  36. Ziadi, S., Poupard, P., Brisset, M. N., Paulin, J. P. and Simoneau, P. 2001. Characterization in apple leaves of two subclasses of PR-10 transcripts inducible by acibenzolar-S-methyl, a functional analogue of salicylic acid. Physiol. Mol. Plant Pathol. 59: 33-43. https://doi.org/10.1006/pmpp.2001.0343