DOI QR코드

DOI QR Code

Structure of SARS-CoV-2 Spike Glycoprotein for Therapeutic and Preventive Target

  • Jaewoo Hong (Department of Physiology, Daegu Catholic University School of Medicine) ;
  • Hyunjhung Jhun (Technical Assistance Center, Korea Food Research Institute) ;
  • Yeo-Ok Choi (Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University) ;
  • Afeisha S. Taitt (Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University) ;
  • Suyoung Bae (Department of Bioequivalence Division for Drug Evaluation, Ministry of Food and Drug Safety) ;
  • Youngmin Lee (Department of Medicine, Pusan Paik Hospital, College of Medicine, Inje University) ;
  • Chang-seon Song (College of Veterinary Medicine, Konkuk University) ;
  • Su Cheong Yeom (Graduate School of International Agricultural Technology, Seoul National University) ;
  • Soohyun Kim (Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University)
  • Received : 2020.12.30
  • Accepted : 2021.02.14
  • Published : 2021.02.28

Abstract

The global crisis caused by the coronavirus disease 2019 (COVID-19) led to the most significant economic loss and human deaths after World War II. The pathogen causing this disease is a novel virus called the severe acute respiratory syndrome coronavirus 2 (SARSCoV-2). As of December 2020, there have been 80.2 million confirmed patients, and the mortality rate is known as 2.16% globally. A strategy to protect a host from SARS-CoV-2 is by suppressing intracellular viral replication or preventing viral entry. We focused on the spike glycoprotein that is responsible for the entry of SARS-CoV-2 into the host cell. Recently, the US Food and Drug Administration/EU Medicines Agency authorized a vaccine and antibody to treat COVID-19 patients by emergency use approval in the absence of long-term clinical trials. Both commercial and academic efforts to develop preventive and therapeutic agents continue all over the world. In this review, we present a perspective on current reports about the spike glycoprotein of SARS-CoV-2 as a therapeutic target.

Keywords

Acknowledgement

This work was supported by National Research Foundation of Korea (NRF2015R1A2A2A01003472, NRF-2014M3A6A4075058, NRF-2015R1A2A1A15051472). This paper was supported by Konkuk University in 2019 and Industry-Academic Cooperation Foundation. Jaewoo Hong was supported by the Intramural Research Program of the Center for Cancer Research, National Cancer Institute, National Institutes of Health.

References

  1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506.  https://doi.org/10.1016/S0140-6736(20)30183-5
  2. World Health Organization. WHO coronavirus disease (COVID-19) dashboard [Internet]. Available at https://covid19.who.int/ [accessed on 8 February 2021].
  3. Chan SW. Current and future direct-acting antivirals against COVID-19. Front Microbiol 2020;11:587944. 
  4. World Health Organization. Report of the WHO-China joint mission on coronavirus disease 2019 (COVID-19) [Internet]. Available at https://www.who.int/publications/i/item/report-of-the-who-chinajoint-mission-on-coronavirus-disease-2019-(covid-19) [accessed on 8 February 2021].
  5. Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol 2021;21:73-82.  https://doi.org/10.1038/s41577-020-00480-0
  6. Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. Nidovirales: evolving the largest RNA virus genome. Virus Res 2006;117:17-37.  https://doi.org/10.1016/j.virusres.2006.01.017
  7. V'kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 2020. doi: 10.1038/s41579-020-00468-6.
  8. Tizard IR. Vaccination against coronaviruses in domestic animals. Vaccine 2020;38:5123-5130.  https://doi.org/10.1016/j.vaccine.2020.06.026
  9. World Health Organization. World Health Organization [Internet]. Available at https://www.who.int [accessed on 8 February 2021].
  10. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270-273.  https://doi.org/10.1038/s41586-020-2012-7
  11. Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020;369:77-81.  https://doi.org/10.1126/science.abc1932
  12. Mercado NB, Zahn R, Wegmann F, Loos C, Chandrashekar A, Yu J, Liu J, Peter L, McMahan K, Tostanoski LH, et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 2020;586:583-588. 
  13. Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W, Xu W, Zhao Y, Li N, Zhang J, et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell 2020;182:713-721.e9. 
  14. Yu J, Tostanoski LH, Peter L, Mercado NB, McMahan K, Mahrokhian SH, Nkolola JP, Liu J, Li Z, Chandrashekar A, et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science 2020;369:806-811.  https://doi.org/10.1126/science.abc6284
  15. Bloch EM, Shoham S, Casadevall A, Sachais BS, Shaz B, Winters JL, van Buskirk C, Grossman BJ, Joyner M, Henderson JP, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest 2020;130:2757-2765.  https://doi.org/10.1172/JCI138745
  16. Burrage DR, Koushesh S, Sofat N. Immunomodulatory drugs in the management of SARS-CoV-2. Front Immunol 2020;11:1844. 
  17. Fung M, Nambiar A, Pandey S, Aldrich JM, Teraoka J, Freise C, Roberts J, Chandran S, Hays SR, Bainbridge E, et al. Treatment of immunocompromised COVID-19 patients with convalescent plasma. Transpl Infect Dis 2020. doi: 10.1111/tid.13477. 
  18. Hueso T, Pouderoux C, Pere H, Beaumont AL, Raillon LA, Ader F, Chatenoud L, Eshagh D, Szwebel TA, Martinot M, et al. Convalescent plasma therapy for B-cell-depleted patients with protracted COVID-19. Blood 2020;136:2290-2295.  https://doi.org/10.1182/blood.2020008423
  19. Liu X, Cao W, Li T. High-dose intravenous immunoglobulins in the treatment of severe acute viral pneumonia: the known mechanisms and clinical effects. Front Immunol 2020;11:1660. 
  20. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020;323:1582-1589.  https://doi.org/10.1001/jama.2020.4783
  21. Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, Foell J, de la Fuente J, Grupp S, Handgretinger R, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med 2021;384:252-260.  https://doi.org/10.1056/NEJMoa2031054
  22. Mahase E. Covid-19: FDA authorises neutralising antibody bamlanivimab for non-admitted patients. BMJ 2020;371:m4362. 
  23. Addetia A, Crawford KH, Dingens A, Zhu H, Roychoudhury P, Huang ML, Jerome KR, Bloom JD, Greninger AL. Neutralizing antibodies correlate with protection from SARS-CoV-2 in humans during a fishery vessel outbreak with a high attack rate. J Clin Microbiol 2020;58:e02107-20. 
  24. Chen J, Lau YF, Lamirande EW, Paddock CD, Bartlett JH, Zaki SR, Subbarao K. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+  T cells are important in control of SARS-CoV infection. J Virol 2010;84:1289-1301.  https://doi.org/10.1128/JVI.01281-09
  25. Sun J, Zhuang Z, Zheng J, Li K, Wong RL, Liu D, Huang J, He J, Zhu A, Zhao J, et al. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell 2020;182:734-743.e5. https://doi.org/10.1016/j.cell.2020.06.010
  26. Zhao J, Li K, Wohlford-Lenane C, Agnihothram SS, Fett C, Zhao J, Gale MJ Jr, Baric RS, Enjuanes L, Gallagher T, et al. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci U S A 2014;111:4970-4975.  https://doi.org/10.1073/pnas.1323279111
  27. Zhao J, Zhao J, Perlman S. T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J Virol 2010;84:9318-9325.  https://doi.org/10.1128/JVI.01049-10
  28. Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR, Wu JE, Alanio C, Kuri-Cervantes L, Pampena MB, D'Andrea K, et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 2020;369:eabc8511. 
  29. Sekine T, Perez-Potti A, Rivera-Ballesteros O, Stralin K, Gorin JB, Olsson A, Llewellyn-Lacey S, Kamal H, Bogdanovic G, Muschiol S, et al. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell 2020;183:158-168.e14.  https://doi.org/10.1016/j.cell.2020.08.017
  30. Zhu L, Yang P, Zhao Y, Zhuang Z, Wang Z, Song R, Zhang J, Liu C, Gao Q, Xu Q, et al. Single-cell sequencing of peripheral mononuclear cells reveals distinct immune response landscapes of COVID-19 and influenza patients. Immunity 2020;53:685-696.e3.  https://doi.org/10.1016/j.immuni.2020.07.009
  31. Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol 2020;5:1185-1191.  https://doi.org/10.1038/s41564-020-00789-5
  32. Rey FA, Stiasny K, Vaney MC, Dellarole M, Heinz FX. The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep 2018;19:206-224.  https://doi.org/10.15252/embr.201745302
  33. Halstead SB, O'Rourke EJ. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med 1977;146:201-217.  https://doi.org/10.1084/jem.146.1.201
  34. Halstead SB, O'Rourke EJ, Allison AC. Dengue viruses and mononuclear phagocytes. II. Identity of blood and tissue leukocytes supporting in vitro infection. J Exp Med 1977;146:218-229.  https://doi.org/10.1084/jem.146.1.218
  35. Katzelnick LC, Narvaez C, Arguello S, Lopez Mercado B, Collado D, Ampie O, Elizondo D, Miranda T, Bustos Carillo F, Mercado JC, et al. Zika virus infection enhances future risk of severe dengue disease. Science 2020;369:1123-1128.  https://doi.org/10.1126/science.abb6143
  36. Hohdatsu T, Nakamura M, Ishizuka Y, Yamada H, Koyama H. A study on the mechanism of antibodydependent enhancement of feline infectious peritonitis virus infection in feline macrophages by monoclonal antibodies. Arch Virol 1991;120:207-217.  https://doi.org/10.1007/BF01310476
  37. Takano T, Kawakami C, Yamada S, Satoh R, Hohdatsu T. Antibody-dependent enhancement occurs upon re-infection with the identical serotype virus in feline infectious peritonitis virus infection. J Vet Med Sci 2008;70:1315-1321. 
  38. Takano T, Yamada S, Doki T, Hohdatsu T. Pathogenesis of oral type I feline infectious peritonitis virus (FIPV) infection: antibody-dependent enhancement infection of cats with type I FIPV via the oral route. J Vet Med Sci 2019;81:911-915.  https://doi.org/10.1292/jvms.18-0702
  39. Vennema H, de Groot RJ, Harbour DA, Dalderup M, Gruffydd-Jones T, Horzinek MC, Spaan WJ. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization. J Virol 1990;64:1407-1409.  https://doi.org/10.1128/jvi.64.3.1407-1409.1990
  40. Jaume M, Yip MS, Cheung CY, Leung HL, Li PH, Kien F, Dutry I, Callendret B, Escriou N, Altmeyer R, et al. Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway. J Virol 2011;85:10582-10597.  https://doi.org/10.1128/JVI.00671-11
  41. Kam YW, Kien F, Roberts A, Cheung YC, Lamirande EW, Vogel L, Chu SL, Tse J, Guarner J, Zaki SR, et al. Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcγRII-dependent entry into B cells in vitro. Vaccine 2007;25:729-740. https://doi.org/10.1016/j.vaccine.2006.08.011
  42. Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H, Tang H, Nishiura K, Peng J, Tan Z, et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 2019;4:e123158. 
  43. Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, He L, Chen Y, Wu J, Shi Z, et al. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol 2020;94:e02015-19. 
  44. Wang Q, Zhang L, Kuwahara K, Li L, Liu Z, Li T, Zhu H, Liu J, Xu Y, Xie J, et al. Immunodominant SARS coronavirus epitopes in humans elicited both enhancing and neutralizing effects on infection in nonhuman primates. ACS Infect Dis 2016;2:361-376.  https://doi.org/10.1021/acsinfecdis.6b00006
  45. Wang SF, Tseng SP, Yen CH, Yang JY, Tsao CH, Shen CW, Chen KH, Liu FT, Liu WT, Chen YM, et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun 2014;451:208-214.  https://doi.org/10.1016/j.bbrc.2014.07.090
  46. Bolles M, Deming D, Long K, Agnihothram S, Whitmore A, Ferris M, Funkhouser W, Gralinski L, Totura A, Heise M, et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol 2011;85:12201-12215.  https://doi.org/10.1128/JVI.06048-11
  47. Deming D, Sheahan T, Heise M, Yount B, Davis N, Sims A, Suthar M, Harkema J, Whitmore A, Pickles R, et al. Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants. PLoS Med 2006;3:e525. 
  48. Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, Peters CJ, Couch RB. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One 2012;7:e35421. 
  49. Yasui F, Kai C, Kitabatake M, Inoue S, Yoneda M, Yokochi S, Kase R, Sekiguchi S, Morita K, Hishima T, et al. Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV. J Immunol 2008;181:6337-6348. 
  50. Luo F, Liao FL, Wang H, Tang HB, Yang ZQ, Hou W. Evaluation of antibody-dependent enhancement of SARS-CoV infection in rhesus macaques immunized with an inactivated SARS-CoV vaccine. Virol Sin 2018;33:201-204. 
  51. Qin E, Shi H, Tang L, Wang C, Chang G, Ding Z, Zhao K, Wang J, Chen Z, Yu M, et al. Immunogenicity and protective efficacy in monkeys of purified inactivated Vero-cell SARS vaccine. Vaccine 2006;24:1028-1034.  https://doi.org/10.1016/j.vaccine.2005.06.038
  52. Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 2018;14:e1007236. 
  53. Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, Lu G, Wu Y, Yan J, Shi Y, et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun 2017;8:15092. 
  54. Kim B, Lee Y, Kim E, Kwak A, Ryoo S, Bae SH, Azam T, Kim S, Dinarello CA. The interleukin-1α precursor is biologically active and is likely a key alarmin in the IL-1 family of cytokines. Front Immunol 2013;4:391. 
  55. Kwak A, Lee Y, Kim H, Kim S. Intracellular interleukin (IL)-1 family cytokine processing enzyme. Arch Pharm Res 2016;39:1556-1564. 
  56. Lee S, Kim E, Jhun H, Hong J, Kwak A, Jo S, Bae S, Lee J, Kim B, Lee J, et al. Proinsulin shares a motif with interleukin-1α (IL-1α) and induces inflammatory cytokine via interleukin-1 receptor 1. J Biol Chem 2016;291:14620-14627. 
  57. Blobel G, Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol 1975;67:835-851. https://doi.org/10.1083/jcb.67.3.835
  58. Walter P, Ibrahimi I, Blobel G. Translocation of proteins across the endoplasmic reticulum. I. Signal recognition protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein. J Cell Biol 1981;91:545-550.  https://doi.org/10.1083/jcb.91.2.545
  59. Sharpe HJ, Stevens TJ, Munro S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 2010;142:158-169.  https://doi.org/10.1016/j.cell.2010.05.037
  60. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A 2009;106:5871-5876.  https://doi.org/10.1073/pnas.0809524106
  61. Millet JK, Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A 2014;111:15214-15219.  https://doi.org/10.1073/pnas.1407087111
  62. Keidar S, Kaplan M, Gamliel-Lazarovich A. ACE2 of the heart: from angiotensin I to angiotensin (1-7). Cardiovasc Res 2007;73:463-469.  https://doi.org/10.1016/j.cardiores.2006.09.006
  63. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F. Structural basis of receptor recognition by SARS-CoV-2. Nature 2020;581:221-224.  https://doi.org/10.1038/s41586-020-2179-y
  64. Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 2020;181:894-904.e9.  https://doi.org/10.1016/j.cell.2020.03.045
  65. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by fulllength human ACE2. Science 2020;367:1444-1448.  https://doi.org/10.1126/science.abb2762
  66. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181:271-280.e8.  https://doi.org/10.1016/j.cell.2020.02.052
  67. Wang Q, Wu J, Wang H, Gao Y, Liu Q, Mu A, Ji W, Yan L, Zhu Y, Zhu C, et al. Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell 2020;182:417-428.e13.  https://doi.org/10.1016/j.cell.2020.05.034
  68. Wong SK, Li W, Moore MJ, Choe H, Farzan M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem 2004;279:3197-3201.  https://doi.org/10.1074/jbc.C300520200
  69. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARSCoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020;46:586-590.  https://doi.org/10.1007/s00134-020-05985-9
  70. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020;181:281-292.e6.  https://doi.org/10.1016/j.cell.2020.02.058
  71. Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 2005;309:1864-1868.  https://doi.org/10.1126/science.1116480
  72. Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, Wong SK, Huang IC, Xu K, Vasilieva N, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 2005;24:1634-1643.  https://doi.org/10.1038/sj.emboj.7600640
  73. Shah M, Ahmad B, Choi S, Woo HG. Mutations in the SARS-CoV-2 spike RBD are responsible for stronger ACE2 binding and poor anti-SARS-CoV mAbs cross-neutralization. Comput Struct Biotechnol J 2020;18:3402-3414.  https://doi.org/10.1016/j.csbj.2020.11.002
  74. Guan Q, Sadykov M, Mfarrej S, Hala S, Naeem R, Nugmanova R, Al-Omari A, Salih S, Mutair AA, Carr MJ, et al. A genetic barcode of SARS-CoV-2 for monitoring global distribution of different clades during the COVID-19 pandemic. Int J Infect Dis 2020;100:216-223.  https://doi.org/10.1016/j.ijid.2020.08.052
  75. Kim S, Lee JH, Lee S, Shim S, Nguyen TT, Hwang J, Kim H, Choi YO, Hong J, Bae S, et al. The progression of SARS coronavirus 2 (SARS-CoV-2): mutation in the receptor binding domain of spike gene. Immune Netw 2020;20:e41.
  76. Plante JA, Liu Y, Liu J, Xia H, Johnson BA, Lokugamage KG, Zhang X, Muruato AE, Zou J, Fontes-Garfias CR, et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature 2020. doi: 10.1038/s41586-020-2895-3. 
  77. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, Hengartner N, Giorgi EE, Bhattacharya T, Foley B, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 2020;182:812-827.e19.  https://doi.org/10.1016/j.cell.2020.06.043
  78. AdebalI O, BIrcan A, CIrcI D, ISlek B, KilinC Z, SelCuk B, Turhan B. Phylogenetic analysis of SARS-CoV-2 genomes in Turkey. Turk J Biol 2020;44:146-156.  https://doi.org/10.3906/biy-2005-35
  79. Mahase E. Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ 2021;372:n296. 
  80. Tang JW, Toovey OTR, Harvey KN, Hui DDS. Introduction of the South African SARS-CoV-2 variant 501Y. V2 into the UK. J Infect 2021. doi: 10.1016/j.jinf.2021.01.007. 
  81. Xie X, Liu Y, Liu J, Zhang X, Zou J, Fontes-Garfias CR, Xia H, Swanson KA, Cutler M, Cooper D, et al. Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K, and N501Y variants by BNT162b2 vaccineelicited sera. bioRxiv 2021. doi: 10.1101/2021.01.27.427998. 
  82. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020;395:565-574.  https://doi.org/10.1016/S0140-6736(20)30251-8
  83. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, et al. Structure of the SARSCoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020;581:215-220.  https://doi.org/10.1038/s41586-020-2180-5
  84. Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, Li F. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A 2020;117:11727-11734.  https://doi.org/10.1073/pnas.2003138117
  85. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260-1263.  https://doi.org/10.1126/science.abb2507
  86. Kalathiya U, Padariya M, Mayordomo M, Lisowska M, Nicholson J, Singh A, Baginski M, Fahraeus R, Carragher N, Ball K, et al. Highly conserved homotrimer cavity formed by the SARS-CoV-2 spike glycoprotein: a novel binding site. J Clin Med 2020;9:1473. 
  87. de Oliveira OV, Rocha GB, Paluch AS, Costa LT. Repurposing approved drugs as inhibitors of SARSCoV-2 S-protein from molecular modeling and virtual screening. J Biomol Struct Dyn 2020. doi: 10.1080/07391102.2020.1772885. 
  88. Wahedi HM, Ahmad S, Abbasi SW. Stilbene-based natural compounds as promising drug candidates against COVID-19. J Biomol Struct Dyn 2020. doi: 10.1080/07391102.2020.1762743. 
  89. Bongini P, Trezza A, Bianchini M, Spiga O, Niccolai N. A possible strategy to fight COVID-19: interfering with spike glycoprotein trimerization. Biochem Biophys Res Commun 2020;528:35-38.  https://doi.org/10.1016/j.bbrc.2020.04.007
  90. Drew ED, Janes RW. Identification of a druggable binding pocket in the spike protein reveals a key site for existing drugs potentially capable of combating Covid-19 infectivity. BMC Mol Cell Biol 2020;21:49. 
  91. Barnes CO, West AP Jr, Huey-Tubman KE, Hoffmann MAG, Sharaf NG, Hoffman PR, Koranda N, Gristick HB, Gaebler C, Muecksch F, et al. Structures of human antibodies bound to SARS-CoV-2 spike reveal common epitopes and recurrent features of antibodies. Cell 2020;182:828-842.e16.  https://doi.org/10.1016/j.cell.2020.06.025
  92. Brouwer PJ, Caniels TG, van der Straten K, Snitselaar JL, Aldon Y, Bangaru S, Torres JL, Okba NM, Claireaux M, Kerster G, et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science 2020;369:643-650. https://doi.org/10.1126/science.abc5902
  93. Cao Y, Su B, Guo X, Sun W, Deng Y, Bao L, Zhu Q, Zhang X, Zheng Y, Geng C, et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients' B cells. Cell 2020;182:73-84.e16.  https://doi.org/10.1016/j.cell.2020.05.025
  94. Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X, Yu J, Shan S, Zhou B, Song S, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 2020;584:115-119.  https://doi.org/10.1038/s41586-020-2380-z
  95. Wu Y, Wang F, Shen C, Peng W, Li D, Zhao C, Li Z, Li S, Bi Y, Yang Y, et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science 2020;368:1274-1278.  https://doi.org/10.1126/science.abc2241
  96. Wu Y, Li C, Xia S, Tian X, Kong Y, Wang Z, Gu C, Zhang R, Tu C, Xie Y, et al. Identification of human single-domain antibodies against SARS-CoV-2. Cell Host Microbe 2020;27:891-898.e5.  https://doi.org/10.1016/j.chom.2020.04.023
  97. Hansen J, Baum A, Pascal KE, Russo V, Giordano S, Wloga E, Fulton BO, Yan Y, Koon K, Patel K, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science 2020;369:1010-1014. 
  98. Monteil V, Kwon H, Prado P, Hagelkruys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, Hurtado Del Pozo C, Prosper F, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinicalgrade soluble human ACE2. Cell 2020;181:905-913.e7.  https://doi.org/10.1016/j.cell.2020.04.004
  99. Lei C, Qian K, Li T, Zhang S, Fu W, Ding M, Hu S. Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nat Commun 2020;11:2070. 
  100. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020;11:1620. 
  101. Wang L, Xiang Y. Spike glycoprotein-mediated entry of SARS coronaviruses. Viruses 2020;12:1289. 
  102. Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, Ying T, Liu S, Shi Z, Jiang S, et al. Fusion mechanism of 2019- nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol 2020;17:765-767.  https://doi.org/10.1038/s41423-020-0374-2
  103. Zhu Y, Yu D, Yan H, Chong H, He Y. Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity. J Virol 2020;94:e00635-20. 
  104. Ling R, Dai Y, Huang B, Huang W, Yu J, Lu X, Jiang Y. In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2. Peptides 2020;130:170328. 
  105. Romeo A, Iacovelli F, Falconi M. Targeting the SARS-CoV-2 spike glycoprotein prefusion conformation: virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors. Virus Res 2020;286:198068. 
  106. Su S, Rasquinha G, Du L, Wang Q, Xu W, Li W, Lu L, Jiang S. A peptide-based HIV-1 fusion inhibitor with two tail-anchors and palmitic acid exhibits substantially improved in vitro and ex vivo anti-HIV-1 activity and prolonged in vivo half-life. Molecules 2019;24:1134. 
  107. Xia S, Yan L, Xu W, Agrawal AS, Algaissi A, Tseng CK, Wang Q, Du L, Tan W, Wilson IA, et al. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci Adv 2019;5:eaav4580. 
  108. Bi W, Xu W, Cheng L, Xue J, Wang Q, Yu F, Xia S, Wang Q, Li G, Qin C, et al. IgG Fc-binding motifconjugated HIV-1 fusion inhibitor exhibits improved potency and in vivo half-life: potential application in combination with broad neutralizing antibodies. PLoS Pathog 2019;15:e1008082. 
  109. Cheng S, Chang X, Wang Y, Gao GF, Shao Y, Ma L, Li X. Glycosylated enfuvirtide: a long-lasting glycopeptide with potent anti-HIV activity. J Med Chem 2015;58:1372-1379.  https://doi.org/10.1021/jm5016582
  110. Wang C, Cheng S, Zhang Y, Ding Y, Chong H, Xing H, Jiang S, Li X, Ma L. Long-acting HIV-1 fusion inhibitory peptides and their mechanisms of action. Viruses 2019;11:811.
  111. Zorzi A, Middendorp SJ, Wilbs J, Deyle K, Heinis C. Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides. Nat Commun 2017;8:16092. 
  112. Werle M, Bernkop-Schnurch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids 2006;30:351-367.  https://doi.org/10.1007/s00726-005-0289-3
  113. Mathieu C, Huey D, Jurgens E, Welsch JC, DeVito I, Talekar A, Horvat B, Niewiesk S, Moscona A, Porotto M. Prevention of measles virus infection by intranasal delivery of fusion inhibitor peptides. J Virol 2015;89:1143-1155. 
  114. Mathieu C, Porotto M, Figueira TN, Horvat B, Moscona A. Fusion inhibitory lipopeptides engineered for prophylaxis of Nipah virus in primates. J Infect Dis 2018;218:218-227. https://doi.org/10.1093/infdis/jiy152