Browse > Article
http://dx.doi.org/10.5423/RPD.2019.25.2.62

Evaluation of Bacterial Spot Disease of Capsicum annuum L. in Drought Stress Environment by High Temperature  

Jang, Jong-Ok (Research Institute for Climate Change and Agriculture, NIHHS, RDA)
Kim, Byung-Hyuk (Research Institute for Climate Change and Agriculture, NIHHS, RDA)
Lee, Jung-Bok (Institute for Development of Bio-industrial Materials, BHNBIO Co., LTD.)
Joa, Jae-Ho (Citrus Research Institute, NIHHS, RDA)
Koh, Sangwook (Research Institute for Climate Change and Agriculture, NIHHS, RDA)
Publication Information
Research in Plant Disease / v.25, no.2, 2019 , pp. 62-70 More about this Journal
Abstract
The global warming by increased $CO_2$ will effect of plant pathogenic microorganisms and resistance of host plants, and it is expected to affect host-pathogen interactions. This study used Capsicum annuum L. and Xanthomonas euvesicatoria, a pathogenic bacteria of pepper, to investigate interactions between hosts and pathogens in a complex environment with increasedcultivation temperature and drought stress. As a result, the bacterial spot disease of C. annuum L. caused by X. euvesicatoria was $35^{\circ}C$ higher than $25^{\circ}C$. In addition, the effect on water potential on bacterial spot disease was much greater water potential -150 kPa than -30 kPa. The disease progress and severity higher than water potential -30 kPa. This result will useful for understanding interaction with red pepper and X. euvesicatoria under the complex environment with increased cultivation temperature and in water potential -150 kPa drought stress in the future.
Keywords
Bacterial spot disease; $CO_2$; pathogenic bacteria; red pepper; Xanthomonas euvesicatoria;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Barber, V. A., Juday, G. P. and Finney, B. P. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405: 668-673.   DOI
2 Bettarini, I., Vaccari, F. P. and Miglietta, F. 1998. Elevated $CO_2$ concen trations and stomatal density: observations from 17 plant species growing in a $CO_2$ spring in central Italy. Glob. Chang. Biol. 4: 17-22.   DOI
3 Chakraborty, S., Pangga, I. B., Lupton, J., Hart, L., Room, P. M. and Yates, D. 2000. Production and dispersal of Colletotrichum gloeosporioides spores on Stylosanthes scabra under elevated $CO_2$. Environ. Pollut. 108: 381-387.   DOI
4 Chakraborty, S., Luck, J., Hollaway, G., Freeman, A., Norton, R., Garrett, K. A. et al. 2008. Impacts of global change on diseases of agricultural crops and forest trees. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 3: 054.
5 Chaves, M. M. and Oliveira, M. M. 2004. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J. Exp. Bot. 55: 2365-2384.   DOI
6 Coakley, S. M., Scherm, H. and Chakraborty, S. 1999. Climate change and plant disease management. Annu. Rev. Phytopathol. 37: 399-426.   DOI
7 Danby, R. K. and Hik, D. S. 2006. Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Glob. Chang. Biol. 13: 437-451.   DOI
8 Durner, J., Shah, J. and Klessig, D. F. 1997. Salicylic acid and disease resistance in plants. Trends Plant Sci. 2: 226-274.
9 Ecker, J. R. 1995. The ethylene signal transduction pathway in plants. Science 268: 667-675.   DOI
10 Eulgem, T., Rushton, P. J., Robatzek, S. and Somssich, I. E. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5: 199-206.   DOI
11 Hibberd, J. M., Whitbread, R. and Farrar, J. F. 1996. Effect of elevated concentrations of $CO_2$ on infection of barley by Erysiphe graminis. Physiol. Mol. Plant Pathol. 48: 37-53.   DOI
12 Kim, B.-H., Jang, J.-O., Kang, Z., Joa, J. H. and Moon, D.-G. 2017. The microbial diversity analysis of the Korea traditional postfermented tea (Chungtaejeon). Korean J. Microbiol. 53: 170-179.   DOI
13 Hipskind, J. D., Nicholson, R. L. and Goldsbrough, P. B. 1996. Isolation of a cDNA encoding a novel leucine-rich repeat motif from Sorghum bicolor inoculated with fungi. Mol. Plant-Microbe. Interact. 9: 819-825.   DOI
14 Jang, J.-O., Kim, B.-H., Moon, D.-G., Koh, S. and Joa, J.-H. 2018. Analysis of bacterial spot disease in red pepper caused by increase of $CO_2$ concentration. Microbiol. Biotechnol. Lett. 46: 77-84.   DOI
15 Jones, C., Robertson, E., Arora, V., Friedlingstein, P., Shevliakova, E., Bopp, L. et al. 2016. Twenty-First-Century compatible $CO_2$ emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. J. Clim. 26: 4398-4413.   DOI
16 Kilpelainen, A., Peltola, H., Ryyppo, A., Sauvala, K., Laitinen, K. and Kellomaki, S. 2003. Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration. Tree Physiol. 23: 889-897.   DOI
17 Kim, D. S. and Hwang, B. K. 2011. The pepper receptor-like cytoplasmic protein kinase CaPIK1 is involved in plant signaling of defense and cell-death responses. Plant J. 66: 642-655.   DOI
18 Korea Meteorological Administration. 2017. Report of global atmosphere watch 2016. Korea Meteorological Administration, Seoul, Korea. 235 pp (in Korean).
19 Lawlor, D. W. 2002. Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. Ann. Bot. 89: 871-885.   DOI
20 Lawlor, D. W. and Cornic, G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Platnt Cell Environ. 25: 275-294.   DOI
21 Lawson, T., Oxborough, K., Morison, J. I. and Baker, N. R. 2003. The responses of guard and mesophyll cell photosynthesis to $CO_2$, $O_2$, light, and water stress in arrange of species are similar. J. Exp. Bot. 54: 1743-1752.   DOI
22 Percy, K. E., Awmack, C. S., Lindroth, R. L., Kubiske, M. E., Kopper, B. J., Isebrands, J. G. et al. 2002. Altered performance of forest pests under atmospheres enriched by $CO_2$ and $O_3$. Nature 420: 403-407.   DOI
23 Manning, W. J. and Tiedemann, A. V. 1995. Climate change: potential effects of increased atmospheric carbon dioxide ($CO_2$), ozone ($O_3$), and ultraviolet-B (UV-B) radiation on plant diseases. Environ. Pollut. 88: 219-245.   DOI
24 Mitchell, D. J. and Zentmyer, G. A. 1971. Effect of oxygen and carbon dioxide tensions on growth of several species of Phytophthora. Phyopathology 61: 787-791.   DOI
25 Oh, S. K., Baek, K. H., Park, J. M., Yi, S. Y., Yu, S. H., Kamoun, S. et al. 2008. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytol. 177: 977-989.   DOI
26 Pittman, J. K., Dean, A. P. and Osundeko, O. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102: 17-25.   DOI
27 Rustad, L., Campbell, J., Marion, G., Norby, R., Mitchell, M., Hartley, A. et al. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126: 543-562.   DOI
28 Shiu, S. H. and Bleecker, A. B. 2003. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 132: 530-543.   DOI
29 Shin, J.-W. and Yun, S.-C. 2010. Elevated $CO_2$ and temperature effects on the incidence of four major chili pepper diseases. Plant Pathol. J. 26: 178-184.   DOI
30 Shiu, S. H. and Bleecker, A. B. 2001. Receptor-like kinases from Arabidopsis form a monophyletic gene family elated to animal receptor kinases. Proc. Natl. Acad. Sci. U.S.A. 98: 10763-10768.   DOI
31 Xu, Z., Hu, T. and Zhang, Y. 2012. Effects of experimental warming on phenology, growth and gas exchange of treeline birch (Betula utilis) saplings, Eastern Tibetan Plateau, China. Eur. J. For. Res. 131: 811-819.   DOI
32 Statistics Korea. 2018. Crop production statistics 2017. Statistics Korea, Daejeon, Korea. 185 pp (in Korean).
33 Volder, A., Edwards, E. J., Evans, J. R., Robertson, B. C., Schortemeyer, M. and Gifford, R. M. 2004. Does greater night-time, rather than constant, warming alter growth of managed pasture under under ambient and elevated atmospheric $CO_2$?. New Phytol. 162: 397-411.   DOI
34 Wang, C. S., Huang, J. C. and Hu, J. H. 1999. Characterization of two subclasses of PR-10 transcripts in lily anthers and induction of their genes through separate signal transduction pathways. Plant Mol. Biol. 40: 807-814.   DOI
35 Ziadi, S., Poupard, P., Brisset, M. N., Paulin, J. P. and Simoneau, P. 2001. Characterization in apple leaves of two subclasses of PR-10 transcripts inducible by acibenzolar-S-methyl, a functional analogue of salicylic acid. Physiol. Mol. Plant Pathol. 59: 33-43.   DOI
36 Yin, H. J., Liu, Q. and Lai, T. 2008. Warming effects on growth and physiology in the seedlings of the two conifers Picea asperata and Abies faxoniana under two contrasting light conditions. Ecol. Res. 23: 459-469.   DOI