DOI QR코드

DOI QR Code

Role of Trehalose Synthesis in Ralstonia syzygii subsp. indonesiensis PW1001 in Inducing Hypersensitive Response on Eggplant (Solanum melongena cv. Senryo-nigou)

  • Laili, Nur (Graduate School of Environmental and Life Science, Okayama University) ;
  • Mukaihara, Takafumi (Research Institute for Biological Sciences, Okayama (RIBS)) ;
  • Matsui, Hidenori (Graduate School of Environmental and Life Science, Okayama University) ;
  • Yamamoto, Mikihiro (Graduate School of Environmental and Life Science, Okayama University) ;
  • Noutoshi, Yoshiteru (Graduate School of Environmental and Life Science, Okayama University) ;
  • Toyoda, Kazuhiro (Graduate School of Environmental and Life Science, Okayama University) ;
  • Ichinose, Yuki (Graduate School of Environmental and Life Science, Okayama University)
  • Received : 2021.06.01
  • Accepted : 2021.10.12
  • Published : 2021.12.01

Abstract

Ralstonia syzygii subsp. indonesiensis (Rsi, former name: Ralstonia solanacearum phylotype IV) PW1001, a causal agent of potato wilt disease, induces hypersensitive response (HR) on its non-host eggplant (Solanum melongena cv. Senryo-nigou). The disaccharide trehalose is involved in abiotic and biotic stress tolerance in many organisms. We found that trehalose is required for eliciting HR on eggplant by plant pathogen Rsi PW1001. In R. solanacearum, it is known that the OtsA/OtsB pathway is the dominant trehalose synthesis pathway, and otsA and otsB encode trehalose-6-phosphate (T6P) synthase and T6P phosphatase, respectively. We generated otsA and otsB mutant strains and found that these mutant strains reduced the bacterial trehalose concentration and HR induction on eggplant leaves compared to wild-type. Trehalose functions intracellularly in Rsi PW1001 because addition of exogenous trehalose did not affect the HR level and ion leakage. Requirement of trehalose in HR induction is not common in R. solanacearum species complex because mutation of otsA in Ralstonia pseudosolanacearum (former name: Ralstonia solanacearum phylotype I) RS1002 did not affect HR on the leaves of its non-host tobacco and wild eggplant Solanum torvum. Further, we also found that each otsA and otsB mutant had reduced ability to grow in a medium containing NaCl and sucrose, indicating that trehalose also has an important role in osmotic stress tolerance.

Keywords

Acknowledgement

This work was supported in part by Joint Research Project by Okayama Prefecture.

References

  1. Alexeyev, M. F. and Shokolenko, I. N. 1995. Mini-Tn10 transposon derivatives for insertion mutagenesis and gene delivery into the chromosome of gram-negative bacteria. Gene 160:59-62. https://doi.org/10.1016/0378-1119(95)00141-R
  2. Alvarez, B., Biosca, E. G. and Lopez, M. M. 2010. On the life of Ralstonia solanacearum, a destructive bacterial plant pathogen. In: Current research, technology and education topics in applied microbiology and microbial biotechnology, ed. by A. Mendez-Vilas, pp. 267-279. Formatex Research Center, Badajoz, Spain.
  3. Arguelles J. C. 2000. Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch. Microbiol. 174:217-224. https://doi.org/10.1007/s002030000192
  4. Asolkar, T. and Ramesh, R. 2018. Development of T3SS mutants (hrpB- and hrcV-) of Ralstonia solanacearum, evaluation of virulence attenuation in brinjal and tomato: a pre-requisite to validate T3Es of R. solanacearum. Indian J. Microbiol. 58:372-380. https://doi.org/10.1007/s12088-018-0736-y
  5. Balint-Kurti, P. 2019. The plant hypersensitive response: concepts, control and consequences. Mol. Plant Pathol. 20:1163-1178. https://doi.org/10.1111/mpp.12821
  6. Becker, A., Schmidt, M., Jager, W. and Puhler, A. 1995. New gentamicin-resistance and lacZ promoter-probe cassettes suitable for insertion mutagenesis and generation of transcriptional fusions. Gene 162:37-39. https://doi.org/10.1016/0378-1119(95)00313-U
  7. Carney, B. F. and Denny, T. P. 1990. A cloned avirulence gene from Pseudomonas solanacearum determines incompatibility on Nicotiana tabacum at the host species level. J. Bacteriol. 172:4836-4843. https://doi.org/10.1128/jb.172.9.4836-4843.1990
  8. Csonka L. N. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53:121-147. https://doi.org/10.1128/mr.53.1.121-147.1989
  9. Cui, H., Tsuda, K. and Parker, J. E. 2015. Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol. 66:487-511. https://doi.org/10.1146/annurev-arplant-050213-040012
  10. Deslandes, L., Olivier, J., Peeters, N., Feng, D. X., Khounlotham, M., Boucher, C., Somssich, I., Genin, S. and Marco, Y. 2003. Physical interaction between RSS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc. Natl. Acad. Sci. U. S. A. 100:8024-8029. https://doi.org/10.1073/pnas.1230660100
  11. Djonovic, S., Urbach, J. M., Drenkard, E., Bush, J., Feinbaum, R., Ausubel, J. L., Traficante, D., Risech, M., Kocks, C., Fischbach, M. A., Priebe, G. P. and Ausubel, F. M. 2013. Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants. PLoS Pathog. 9:e1003217. https://doi.org/10.1371/journal.ppat.1003217
  12. Du, H., Chen, B., Zhang, X., Zhang, F., Miller, S. A., Rajashekara, G., Xu, X. and Geng, S. 2017. Evaluation of Ralstonia solanacearum infection dynamics in resistant and susceptible pepper lines using bioluminescence imaging. Plant Dis. 101:272-278. https://doi.org/10.1094/pdis-05-16-0714-re
  13. Fernandez, O., Bethencourt, L., Quero, A., Sangwan, R. S. and Clement, C. 2010. Trehalose and plant stress responses: friend or foe? Trends Plant Sci. 15:409-417. https://doi.org/10.1016/j.tplants.2010.04.004
  14. Feys, B. J. and Parker, J. E. 2000. Interplay of signaling pathways in plant disease resistance. Trends Genet. 16:449-455. https://doi.org/10.1016/S0168-9525(00)02107-7
  15. Freeman, B. C., Chen, C. and Beattie, G. A. 2010. Identification of the trehalose biosynthetic loci of Pseudomonas syringae and their contribution to fitness in the phyllosphere. Environ. Microbiol. 12:1486-1497. https://doi.org/10.1111/j.1462-2920.2010.02171.x
  16. Genin, S. 2010. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. New Phytol. 187:920-928. https://doi.org/10.1111/j.1469-8137.2010.03397.x
  17. Genin, S. and Deny, T. P. 2012. Pathogenomics of the Ralstonia solanacearum species complex. Annu. Rev. Phytopathol. 50:67-89. https://doi.org/10.1146/annurev-phyto-081211-173000
  18. Hayner, G. A., Khetan, S. and Paulick, M. G. 2017. Quantification of the disaccharide trehalose from biological samples: a comparison of analytical methods. ACS Omega 2:5813-5823. https://doi.org/10.1021/acsomega.7b01158
  19. Horita, M., Suga, Y., Ooshiro, A. and Tsuchiya, K. 2010. Analysis of genetic and biological characters of Japanese potato strains of Ralstonia solanacearum. J. Gen. Plant Pathol. 76:196-207. https://doi.org/10.1007/s10327-010-0229-2
  20. Lavie, M., Shillington, E., Eguiluz, C., Grimsley, N. and Boucher, C. 2002. PopP1, a new member of the YopJ/AvrRxv family of type III effector proteins, acts as a host-specificity factor and modulates aggressiveness of Ralstonia solanacearum. Mol. Plant Microbe Interact. 15:1058-1068. https://doi.org/10.1094/MPMI.2002.15.10.1058
  21. Li, H., Su, H., Kim, S. B., Chang, Y. K., Hong, S.-K., Seo, Y.-G. and Kim, C.-J. 2012. Enhanced production of trehalose in Escherichia coli by homologous expression of otsBA in the presence of the trehalase inhibitor, validamycin A, at high osmolarity. J. Biosci. Bioeng. 113:224-232. https://doi.org/10.1016/j.jbiosc.2011.09.018
  22. Lonjon, F., Turner, M., Henry, C., Rengel, D., Lohou, D., van de Kerkhove, Q., Cazale, A.-C., Peeters, N., Genin, S. and Vailleau, F. 2016. Comparative secretome analysis of Ralstonia solanacearum type 3 secretion-associated mutants reveals a fine control of effector delivery, essential for bacterial pathogenicity. Mol. Cell Proteomics 15:598-613. https://doi.org/10.1074/mcp.M115.051078
  23. Lunn, J. E., Delorge, I., Figueroa, C. M., Van Dijck, P. and Stitt, M. 2014. Trehalose metabolism in plants. Plant J. 79:544-567. https://doi.org/10.1111/tpj.12509
  24. MacIntyre, A. M., Barth, J. X., Pellitteri Hahn, M. C., Scarlett, C. O., Genin, S. and Allen, C. 2020. Trehalose synthesis contributes to osmotic stress tolerance and virulence of the bacterial wilt pathogen Ralstonia solanacearum. Mol. Plant-Microbe Interact. 33:462-473. https://doi.org/10.1094/mpmi-08-19-0218-r
  25. Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G. and Foster, G. D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13:614-629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
  26. Mazo-Molina, C., Mainiero, S., Hind, S. R., Kraus, C. M., Vachev, M., Maviane-Macia, F., Lindeberg, M., Saha, S., Strickler, S. R., Feder, A., Giovannoni, J. J., Smart, C. D., Peeters, N. and Martin, G. B. 2019. The Ptr1 locus of Solanum lycopersicoides confers resistance to race 1 strains of Pseudomonas syringae pv. tomato and to Ralstonia pseudosolanacearum by recognizing the type III effectors AvrRpt2 and RipBN. Mol. Plant-Microbe Interact. 32:949-960. https://doi.org/10.1094/mpmi-01-19-0018-r
  27. Meng, F. 2013. The virulence factors of the bacterial wilt pathogen Ralstonia solanacearum. J. Plant Pathol. Microbiol. 4:168. https://doi.org/10.4172/2157-7471.1000168
  28. Miao, Y., Tenor, J. L., Toffaletti, D. L., Washington, E. J., Liu, J., Shadrick, W. R., Schumacher, M. A., Lee, R. E., Perfect, J. R. and Brennan, R. G. 2016. Structures of trehalose-6-phosphate phosphatase from pathogenic fungi reveal the mechanisms of substrate recognition and catalysis. Proc. Natl. Acad. Sci. U. S. A. 113:7148-7153. https://doi.org/10.1073/pnas.1601774113
  29. Miller, J. H. 1992. The lac system. In: A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria, ed. by J. H. Miller, pp. 43-80. Cold Spring Harbor Laboratory Press, New York, NY, USA.
  30. Minh Tran, T., MacIntyre, A., Khokhani, D., Hawes, M. and Allen, C. 2016. Extracellular DNases of Ralstonia solanacearum modulate biofilms and facilitate bacterial wilt virulence. Environ. Microbiol. 18:4103-4117. https://doi.org/10.1111/1462-2920.13446
  31. Morel, A., Guinard, J., Lonjon, F., Sujeeun, L., Barberis, P., Genin, S., Vailleau, F., Daunay, M.-C., Dintinger, J., Poussier, S., Peeters, N. and Wicker, E. 2018. The eggplant AG91-25 recognizes the Type III-secreted effector RipAX2 to trigger resistance to bacterial wilt (Ralstonia solanacearum species complex). Mol. Plant Pathol. 19:2459-2472. https://doi.org/10.1111/mpp.12724
  32. Mori, Y., Inoue, K., Ikeda, K., Nakayashiki, H., Higashimoto, C., Ohnishi, K., Kiba, A. and Hikichi, Y. 2016. The vascular plant-pathogenic bacterium Ralstonia solanacearum produces biofilms required for its virulence on the surfaces of tomato cells adjacent to intercellular spaces. Mol. Plant Pathol. 17:890-902. https://doi.org/10.1111/mpp.12335
  33. Mukaihara, T., Tamura, N. and Iwabuchi, M. 2010. Genome-wide identification of a large repertoire of Ralstonia solanacearum type III effector proteins by a new functional screen. Mol. Plant-Microbe Interact. 23:251-262. https://doi.org/10.1094/mpmi-23-3-0251
  34. Mukaihara, T., Tamura, N., Murata, Y. and Iwabuchi, M. 2004. Genetic screening of Hrp type III-related pathogenicity genes controlled by the HrpB transcriptional activator in Ralstonia solanacearum. Mol. Microbiol. 54:863-875. https://doi.org/10.1111/j.1365-2958.2004.04328.x
  35. Murata, Y., Tamura, N., Nakaho, K. and Mukaihara, T. 2006. Mutations in the lrpE gene of Ralstonia solanacearum affects Hrp pili production and virulence. Mol. Plant-Microbe Interact. 19:884-895. https://doi.org/10.1094/mpmi-19-0884
  36. Nahar, K., Matsumoto, I., Taguchi, F., Inagaki, Y., Yamamoto, M., Toyoda, K., Shiraishi, T., Ichinose, Y. and Mukaihara, T. 2014. Ralstonia solanacearum type III secretion system effector Rip36 induces a hypersensitive response in the nonhost wild eggplant Solanum torvum. Mol. Plant Pathol. 15:297-303. https://doi.org/10.1111/mpp.12079
  37. Nakano, M., Ichinose, Y. and Mukaihara, T. 2021. Ralstonia solanacearum type III effector RipAC targets SGT1 to suppress effector-triggered immunity. Plant Cell Physiol. 61:2067-2076. https://doi.org/10.1093/pcp/pcaa122
  38. Nakano, M. and Mukaihara, T. 2019. The type III effector RipB from Ralstonia solanacearum RS1000 acts as a major avirulence factor in Nicotiana benthamiana and other Nicotiana species. Mol. Plant Pathol. 20:1237-1251. https://doi.org/10.1111/mpp.12824
  39. Parales, R. E. and Harwood, C. S. 1993. Construction and use of a new broad-host-range lacZ transcriptional fusion vector, pHRP309, for gram- bacteria. Gene 133:23-30. https://doi.org/10.1016/0378-1119(93)90220-W
  40. Parke, D. 1990. Construction of mobilizable vectors derived from plasmids RP4, pUC18 and pUC19. Gene 93:135-137. https://doi.org/10.1016/0378-1119(90)90147-J
  41. Paul, M. J., Primavesi, L. F., Jhurreea, D. and Zhang, Y. 2008. Trehalose metabolism and signaling. Annu. Rev. Plant Biol. 59:417-441. https://doi.org/10.1146/annurev.arplant.59.032607.092945
  42. Peeters, N., Carrere, S., Anisimova, M., Plener, L., Cazale, A.-C. and Genin, S. 2013. Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics 14:859. https://doi.org/10.1186/1471-2164-14-859
  43. Piazza, A., Zimaro, T., Garavaglia, B. S., Ficarra, F. A., Thomas, L., Marondedze, C., Feil, R., Lunn, J. E., Gehring, C., Ottado, J. and Gottig, N. 2015. The dual nature of trehalose in citrus canker disease: a virulence factor for Xanthomonas citri subsp. citri and a trigger for plant defence responses. J. Exp. Bot. 66:2795-2811. https://doi.org/10.1093/jxb/erv095
  44. Poueymiro, M., Cazale, A. C., Francois, J. M., Parrou, J. L., Peeters, N. and Genin, S. 2014. A Ralstonia solanacearum type III effector directs the production of the plant signal metabolite trehalose-6-phosphate. mBio 5:e02065-14.
  45. Poueymiro, M., Cunnac, S., Barberis, P., Deslandes, L., Peeters, N., Cazale-Noel, A.-C., Boucher, C. and Genin, S. 2009. Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco. Mol. Plant-Microbe Interact. 22:538-550. https://doi.org/10.1094/mpmi-22-5-0538
  46. Prior, P., Ailloud, F., Dalsing, B. L., Remenant, B., Sanchez, B. and Allen, C. 2016. Genomic and proteomic evidence supporting the division of the plant pathogen Ralstonia solanacearum into three species. BMC Genomics 17:90. https://doi.org/10.1186/s12864-016-2413-z
  47. Safni, I., Cleenwerck, I., De Vos, P., Fegan, M., Sly, L. and Kappler, U. 2014. Polyphasic taxonomic revision of the Ralstonia solanacearum species complex: proposal to emend the descriptions of Ralstonia solanacearum and Ralstonia syzygii and reclassify current R. syzygii strains as Ralstonia syzygii subsp. syzygii subsp. nov., R. solanacearum phylotype IV strains as Ralstonia syzygii subsp. indonesiensis subsp. nov., banana blood disease bacterium strains as Ralstonia syzygii subsp. celebesensis subsp. nov. and R. solanacearum phylotype I and III strains as Ralstonia pseudosolanacearum sp. nov. Int. J. Syst. Evol. Microbiol. 64:3087-3103. https://doi.org/10.1099/ijs.0.066712-0
  48. Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G. and Puhler, A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69-73. https://doi.org/10.1016/0378-1119(94)90324-7
  49. Simon, R., Priefer, U. and Puhler, A. 1983. A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology 1:784-791. https://doi.org/10.1038/nbt1183-784
  50. Suga, Y., Horita, M., Umekita, M., Furuya, N. and Tsuchiya, K. 2013. Pathogenic characters of Japanese potato strains of Ralstonia solanacearum. J. Gen. Plant Pathol. 79:110-114. https://doi.org/10.1007/s10327-013-0429-7
  51. Sun, T., Wu, W., Wu, H., Rou, W., Zhou, Y., Zhuo, T., Fan, X., Hu, X. and Zou, H. 2020. Ralstonia solanacearum elicitor RipX induces defense reaction by suppressing the mitochondrial atpA gene in host plant. Int. J. Mol. Sci. 21:2000. https://doi.org/10.3390/ijms21062000
  52. Tayeh, C., Randoux, B., Vincent, D., Bourdon, N. and Reignault, P. 2014. Exogenous trehalose induces defenses in wheat before and during a biotic stress caused by powdery mildew. Phytopathology 104:293-305. https://doi.org/10.1094/PHYTO-07-13-0191-R
  53. Tournu, H., Fiori, A. and Van Dijck, P. 2013. Relevance of trehalose in pathogenicity: some general rules, yet many exceptions. PLoS Pathog. 9:e1003447. https://doi.org/10.1371/journal.ppat.1003447
  54. van Elsas, J. D., Kastelein, P., de Vries, P. M. and van Overbeek, L. S. 2001. Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water. Can. J. Microbiol. 47:842-854. https://doi.org/10.1139/cjm-47-9-842
  55. Zhang, Y., Primavesi, L. F., Jhurreea, D., Andralojc, P. J., Mitchell, R. A. C., Powers, S. J., Schluepmann, H., Delatte, T., Wingler, A. and Paul, M. J. 2009. Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol. 149:1860-1871. https://doi.org/10.1104/pp.108.133934
  56. Zhuo, T., Wang, X., Chen, Z., Cui, H., Zeng, Y., Chen, Y., Fan, X., Hu, X. and Zou, H. 2020. The Ralstonia solanacearum effector RipI induces a defence reaction by interacting with the bHLH93 transcription factor in Nicotiana benthamiana. Mol. Plant Pathol. 21:999-1004. https://doi.org/10.1111/mpp.12937