• Title/Summary/Keyword: Host resistance

Search Result 389, Processing Time 0.022 seconds

Aggressiveness of Three Snow Mold Fungi on Creeping Bentgrass Cultivars under Controlled Environment Conditions

  • Chang, Seog-Won;Jung, Geun-Hwa
    • The Plant Pathology Journal
    • /
    • v.25 no.1
    • /
    • pp.6-12
    • /
    • 2009
  • Snow molds are the most important winter diseases of turfgrass in the United States and Canada. Eight isolates of three snow mold fungal species (three isolates of Typhula ishikariensis, three of T. incarnata, and two of Microdochium nivale) were collected from infected turfgrasses on golf courses. The isolates were evaluated for their relative aggressiveness on three cultivars (L-93, Penncross, and Providence) of creeping bentgrass (Agrostis palustris) under the same controlled conditions. Four plant ages (15, 19, 23 and 27 week-old plants from germination to inoculation) were evaluated for their susceptibility to the three pathogens and for the recovery of the plants. Regardless of age or cultivar of the host plant, M. nivale was found to be more aggressive and faster to infect and colonize than Typhula species. After three weeks recovery, M. nivale-inoculated plants showed higher disease severity than plants inoculated with the two Typhula species. Plants infected by Typhula species displayed no significant difference in disease severity. As creeping bentgrass plants get older, the severity of disease caused by three snow molds gradually decreases. This effect was observed in all cultivars tested, suggesting expression of age-related resistance as the bentgrass plants matured.

Effect of Experimental Electrization Stress on the Pathogenesis of Escherichia coli in Mice (실험적 감전 Stress 가 Escherichia coli 감염마우스의 기병에 미치는 영향)

  • Lee, Bang Whan
    • Korean Journal of Veterinary Research
    • /
    • v.13 no.2
    • /
    • pp.119-129
    • /
    • 1973
  • A hypothesis that is a stress condition in animal may cause either enhancement or reduction of the host resistance against microbial infection was experimentally studied. Among of many processes for stress formation an experimental electrization in mice was devised, on the bases of blood picture analysis, and studied the effect of experimental electrization of mice on E. coll infection. The results obtained were as follows. 1. Electrization with ordinary current, A. C. 60 cps., on the path of symmetrical line of both posterior limbs at 20 to 100 volts (less than 10 mA) for 15 to 30 seconds was able to induce a stress reaction in blood pattern without showing any dangers of electrocution, electric burns and other residual signs, and no correlation between blood pattern of the reaction and an amount of current between 20 to 100 volts was observed. As the electrodes, two of 21 gauge hypodermic needles were used, when the electrization each of them were inserted into the center of toe tissue of the both legs. 2. Serum protein fractions following the experimental electrization showed a tendency of a low A/G ratio and a high value of ${\alpha}$-globulin. 3. In the studies on the effect of electrical stress on the pathogenesis of E. coli in mice, a group in which a simultaneous electrization and infection, and a group infected two hours after electrization showed 80 per cent mortality. On the other hand, infection after 20 hours electrization and control groups showed their mortality of 40 and 60 per cent respectively.

  • PDF

A Leaf-Inhabiting Endophytic Bacterium, Rhodococcus sp. KB6, Enhances Sweet Potato Resistance to Black Rot Disease Caused by Ceratocystis fimbriata

  • Hong, Chi Eun;Jeong, Haeyoung;Jo, Sung Hee;Jeong, Jae Cheol;Kwon, Suk Yoon;An, Donghwan;Park, Jeong Mee
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.488-492
    • /
    • 2016
  • Rhodococcus species have become increasingly important owing to their ability to degrade a wide range of toxic chemicals and produce bioactive compounds. Here, we report isolation of the Rhodococcus sp. KB6, which is a new leaf-inhabiting endophytic bacterium that suppresses black rot disease in sweet potato leaves. We determined the 7.0 Mb draft genome sequence of KB6 and have predicted 19 biosynthetic gene clusters for secondary metabolites, including heterobactins, which are a new class of siderophores. Notably, we showed the first internal colonization of host plants with Rhodococcus sp. KB6 and discuss its potential as a biocontrol agent for sustainable agriculture.

Novel Approaches for Efficient Antifungal Drug Action

  • Lee, Heejeong;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.11
    • /
    • pp.1771-1781
    • /
    • 2018
  • The emergence of multidrug-resistant microorganisms, as well as fungal infectious diseases that further threaten health, especially in immunodeficient populations, is a major global problem. The development of new antifungal agents in clinical trials is inferior to the incidence of drug resistance, and the available antifungal agents are restricted. Their mechanisms aim at certain characteristics of the fungus in order to avoid biological similarities with the host. Synthesis of the cell wall and ergosterol are mainly targeted in clinical use. The need for new approaches to antifungal therapeutic agents or development alternatives has increased. This review explores new perspectives on mechanisms to effectively combat fungal infections and effective antifungal activity. The clinical drug have a common feature that ultimately causes caspase-dependent cell death. The drugs-induced cell death pathway is associated with mitochondrial dysfunction, including mitochondrial membrane depolarization and cytochrome c release. This mechanism of action also reveals antimicrobial peptides, the primary effector molecules of innate systems, to highlight new alternatives. Furthermore, drug combination therapy is suggested as another strategy to combat fungal infection. The proposal for a new approach to antifungal agents is not only important from a basic scientific point of view, but will also assist in the selection of molecules for combination therapy.

Antimicrobial Peptides (AMPs): Peptide Structure and Mode of Action

  • Park, Yoon-Kyung;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.507-516
    • /
    • 2005
  • Antimicrobial peptides (AMPs) have been isolated and characterized from tissues and organisms representing virtually every kingdom and phylum. Their amino acid composition, amphipathicity, cationic charge, and size allow them to attach to and insert into membrane bilayers to form pores by 'barrel-stave', 'carpet' or 'toroidal-pore' mechanisms. Although these models are helpful for defining mechanisms of AMP activity, their relevance to resolving how peptides damage and kill microorganisms still needs to be clarified. Moreover, many AMPs employ sophisticated and dynamic mechanisms of action to carry out their likely roles in antimicrobial host defense. Recently, it has been speculated that transmembrane pore formation is not the only mechanism of microbial killing by AMPs. In fact, several observations suggest that translocated AMPs can alter cytoplasmic membrane septum formation, reduce cell-wall, nucleic acid, and protein synthesis, and inhibit enzymatic activity. In this review, we present the structures of several AMPs as well as models of how AMPs induce pore formation. AMPs have received special attention as a possible alternative way to combat antibiotic-resistant bacterial strains. It may be possible to design synthetic AMPs with enhanced activity for microbial cells, especially those with antibiotic resistance, as well as synergistic effects with conventional antibiotic agents that lack cytotoxic or hemolytic activity.

The role of necroptosis in the treatment of diseases

  • Cho, Young Sik
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.219-224
    • /
    • 2018
  • Necroptosis is an emerging form of programmed cell death occurring via active and well-regulated necrosis, distinct from apoptosis morphologically, and biochemically. Necroptosis is mainly unmasked when apoptosis is compromised in response to tumor necrosis factor alpha. Unlike apoptotic cells, which are cleared by macrophages or neighboring cells, necrotic cells release danger signals, triggering inflammation, and exacerbating tissue damage. Evidence increasingly suggests that programmed necrosis is not only associated with pathophysiology of disease, but also induces innate immune response to viral infection. Therefore, necroptotic cell death plays both physiological and pathological roles. Physiologically, necroptosis induce an innate immune response as well as premature assembly of viral particles in cells infected with virus that abrogates host apoptotic machinery. On the other hand, necroptosis per se is detrimental, causing various diseases such as sepsis, neurodegenerative diseases and ischemic reperfusion injury. This review discusses the signaling pathways leading to necroptosis, associated necroptotic proteins with target-specific inhibitors and diseases involved. Several studies currently focus on protective approaches to inhibiting necroptotic cell death. In cancer biology, however, anticancer drug resistance severely hampers the efficacy of chemotherapy based on apoptosis. Pharmacological switch of cell death finds therapeutic application in drug- resistant cancers. Therefore, the possible clinical role of necroptosis in cancer control will be discussed in brief.

Characterization of Sclerotinia sclerotiorum, an Emerging Fungal Pathogen Causing Blight in Hyacinth Bean (Lablab purpureus)

  • Prova, Ananya;Akanda, Abdul Mannan;Islam, Shaikhul;Hossain, Md. Motaher
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.367-380
    • /
    • 2018
  • Stems and pods of hyacinth bean cultivated in a farmer's field in Gazipur District, Bangladesh, were found rotted in nearly 5% hyacinth bean plants. A fungus having fluffy mycelium and large sclerotia was isolated from affected tissues. Combined results of morphological, molecular and pathological analyses identified the fungus as Sclerotinia sclerotiorum (Lib) de Bary. Inoculating the fungus on healthy hyacinth bean plants and pods reproduced the symptoms previously observed in the field. The three isolates obtained from naturally infected plants were cross inoculated in hyacinth bean, okra and African-American marigold and they were pathogenic to these hosts. The optimum temperature and pH for its growth were $20^{\circ}C$ and pH 5.0, respectively. Sclerotial development was favored at pH 5.0. Sucrose and mannitol were the best carbon sources to support hyphal growth, while glucose was the most favourable for sclerotial development. The hyacinth bean genotypes, HB-82 (Rupban Sheem) and HB-102 were found highly resistant, while HB-94 (Ashina) was moderate resistant to the fungus. Finally, S. sclerotiorum was sensitive to Bavistin, Dithane M-45 and Rovral fungicides and Ca in the form of $CaCl_2$. This observation could possibly aid in eliminating field loss in hyacinth bean caused by an emerging pathogenic fungus S. sclerotiorum.

Phytohormnes producing Preussia sp. BSL-10 induce phytohormonal changes in tomato (Solanum lycopersium cv.) under divers temperature.

  • Al-Hosni, Khdija;Shahzad, Raheem;Kang, Sang-Mo;Lee, In-Jung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.202-202
    • /
    • 2017
  • Global climate change resulted in unwarranted change in global temperature and caused heat and cold stress, which are consider major threat to agriculture productivity around the world. The use of plant growth-promoting microbes is an eco-friendly strategy to counteract such stresses and confer tolerance to the plants. In current study, previously isolated endophytic fungi Preussia sp. BSL-10 has been found to produce phytohormones such as IAA and GA and as such, endophyte Preussia sp. BSL-10 found to induced tolerance against heat and cold stress. The results showed that under both heat and cold stress the plant growth parameter such as shoot, root length, shoot fresh weight and root fresh weight is higher in Preussia sp. BSL-10 treated plants as compare to free Preussia sp. BSL-10 control plants. In addition, the stress-sensitive endogenous ABA levels were significantly increased in Preussia sp. BSL-10 host plant. The current result suggest that the phytohormone-producing endophyte Preussia sp. BSL-10 can increase plant resistance toheat and cold stress, in turn improving agricultural productivity.

  • PDF

Current Status of Wheat Transformation

  • Rakszegi, Marrian;Tamas, Cecilia;Szucs, Peter;Tamas, Laszlo;Bedo, Zoltan
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.67-81
    • /
    • 2001
  • Traditionally, genetic variability is generated by an extensive crossing program, which is complemented by strict selection to identify useful new recombinants. Plant biotechnology offers many opportunities for breeders to solve certain breeding problems at the molecular level. The tissue culture methodology and the genetic modification of economically important monocotyledons have undergone a revolution in the last decade. As the production of transgenic plants is a complex procedure, including the uptake of DNA molecules into the cells, the integration of foreign nucleotide sequences into the host genomic DNA and the expression of new genes in a controlled way, and as there are still many unsolved questions, further development is necessary. The methodology opens up the possibility of introducing novel genes that may induce resistance to diseases and abiotic stresses, allow the modification of dough quality and the dietetic quality of proteins, and increase the levels of micronutrients such as iron, zinc, and vitamins. In the present review, the authors would like to summarise the most important advances in wheat transformation.

  • PDF

Electrochemical Behaviors of PEO-treated Ti-6Al-4V Alloy in Solution Containing Zn and Si Ions

  • Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.160-160
    • /
    • 2017
  • Commercially pure titanium (Cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Plasma electrolyte oxidation (PEO) enables control in the chemical composition, porous structure, and thickness of the TiO2 layer on Ti surface. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study on electrochemical behaviors of PEO-treated Ti-6Al-4V Alloy in solution containing Zn and Si ions. The morphology, the chemical composition, and the microstructure analysis of the sample were examined using FE-SEM, EDS, and XRD. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat. The promising results successfully demonstrated the immense potential of Si/Zn-TiO2 coatings in dental and biomaterials applications.

  • PDF