DOI QR코드

DOI QR Code

Aggressiveness of Three Snow Mold Fungi on Creeping Bentgrass Cultivars under Controlled Environment Conditions

  • Chang, Seog-Won (Bio Regional Innovation Center and Department of Medical Science, Youngdong University) ;
  • Jung, Geun-Hwa (Department of Plant, Soil, and Insect Sciences, University of Massachusetts)
  • Published : 2009.03.31

Abstract

Snow molds are the most important winter diseases of turfgrass in the United States and Canada. Eight isolates of three snow mold fungal species (three isolates of Typhula ishikariensis, three of T. incarnata, and two of Microdochium nivale) were collected from infected turfgrasses on golf courses. The isolates were evaluated for their relative aggressiveness on three cultivars (L-93, Penncross, and Providence) of creeping bentgrass (Agrostis palustris) under the same controlled conditions. Four plant ages (15, 19, 23 and 27 week-old plants from germination to inoculation) were evaluated for their susceptibility to the three pathogens and for the recovery of the plants. Regardless of age or cultivar of the host plant, M. nivale was found to be more aggressive and faster to infect and colonize than Typhula species. After three weeks recovery, M. nivale-inoculated plants showed higher disease severity than plants inoculated with the two Typhula species. Plants infected by Typhula species displayed no significant difference in disease severity. As creeping bentgrass plants get older, the severity of disease caused by three snow molds gradually decreases. This effect was observed in all cultivars tested, suggesting expression of age-related resistance as the bentgrass plants matured.

Keywords

References

  1. Arsvoll, K. 1977. Effect of hardening, plant age, and development in Phleum pratense and Festuca pratensis on resistance to snow mold fungi. Meld. Sci. Rep. Agri. Univ. Norway 56: 1-13
  2. Bruehl, G W 1982. Developing wheat resistant to snow mold in Washington State. Plant Dis. 66:1090-1095 https://doi.org/10.1094/PD-66-1090
  3. Bruehl, G W and Machtmes, R. 1978. Incompatibility alleles of Typhula incarnata. Phytopathology 68: 1311-1313 https://doi.org/10.1094/Phyto-68-1311
  4. Burpee, L. L. 1992. Assessment of resistance to Rhizoctonia solani in tall fescue based on disease progress and crop recovery. Plant Dis. 76: 1065-1068 https://doi.org/10.1094/PD-76-1065
  5. Burpee, L. L., Mueller, A. E. and Hannusch, D. J. 1990. Control of Typhula blight and pink snow mold of creeping bentgrass and residual suppression of dollar spot by triadimefon and propiconazole. Plant Dis. 74:687-689 https://doi.org/10.1094/PD-74-0687
  6. Chang, S. W, Chang, T. H., Abler, R. A. B. and Jung, G 2007. Variation in bentgrass susceptibility to Typhula incarnata and in isolate aggressiveness by geographic origin under controlled environment conditions. Plant Dis. 91 :446-452 https://doi.org/10.1094/PDIS-91-4-0446
  7. Chang, S. W, Chang T. H., Tredway, L. and Jung, G 2006a. Aggressiveness of Typhula ishikariensis isolates to cultivars of bentgrass species (Agrostis spp.)under controlled environment conditions. Plant Dis. 90:951-956 https://doi.org/10.1094/PD-90-0951
  8. Chang, S. W. and Jung, G 2008. The first linkage map of the plant-pathogenic basidiomyeete Typhula ishik:ariensis. Genome 51:128-136 https://doi.org/10.1139/G07-097
  9. Chang, S. W, Scheef, E., Abler, R. A. B., Clayton, M. K., Thomson, P., Johnson, P. and Jung, G 2006b. Distribution of Typhula species and T. ishikariensis varieties in Wisconsin, Utah, Michigan and Minnesota states. Phytopathology 96:926-933 https://doi.org/10.1094/PHYTO-96-0926
  10. Couch, H. B. 1962. Diseases of turfgrasses. Reinhold, New York, 289 pp
  11. Couch, H. B. 1995. Diseases of Turfgrasses. 3rd ed. Krieger Publishing, Malabar, FL
  12. De Visser, J. A. G M. and Rozen, D. E. 2005. Limits to adaptation in asexual populations. J Eval. BioI. 18:779-788 https://doi.org/10.1111/j.1420-9101.2005.00879.x
  13. Gaudet, D. A. and Chen, T. H. H. 1987. Effects of hardening and plant age on development of resistance to cottony snow mold (Coprinus psychromorhidus) in winter wheat under controlled conditions. Can. J Bot. 65:1152-1156 https://doi.org/10.1139/b87-160
  14. Gaudet, D. A., Laroche, A. and Yoshid, M. 1999. Low temperature-wheat-fumgal interactions: A carbohydrate connection. Physiol. Plant 106:437-444 https://doi.org/10.1034/j.1399-3054.1999.106412.x
  15. Hsiang, T., Matsumoto, N. and Millett, S. M. 1999. Biology and management of Typhula snow molds of turfgrass. Plant Dis. 86:788-798 https://doi.org/10.1094/PDIS.1999.83.9.788
  16. Kiyomoto, R. K. and Bruehl, G W 1977. Carbohydrate accumulation and deletion by winter cereals differing in resistance to Typhula idahoensis. Phytopathology 67:206-211
  17. Lebeau, J. B. 1964. Control of snow mold by regulating winter soil temperature. Phytopathology 54:693-696
  18. Litschko, L. and Burpee, L. L. 1987. Variation among isolates of Microdochium nivale collected from wheat and turfgrasses. Trans. Brit. Mycol. Soc. 89:252-256 https://doi.org/10.1016/S0007-1536(87)80163-8
  19. Mahuku, G S., Hsiang, T. and Yang, L. 1998. Genetic diversity of Microdochium nivale isolates from turfgrass. Mycol. Res. 102:559-567 https://doi.org/10.1017/S0953756297005340
  20. Matsumoto, N. 1994. Ecological adaptations of low temperature plant pathogenic fungi to diverse winter climates. Can. J Plant Path. 16:237-240 https://doi.org/10.1080/0706066940950076110.1080/0706066940950076110.1080/0706066940950076110.1080/0706066940950076110.1080/0706066940950076110.1080/07060669409500761
  21. Nakajima, T. and Abe, J. 1990. A method for assessing resistance to the snow molds '{vphula incarnata and Microdochium nivale in winter wheat incubated at the optimum growth tempcrature ranges of the fungi. Can. J Bot. 68:343-346 https://doi.org/10.1139/b90-045
  22. Nakajima, T. and Abe, J. 1996. Environmental factors affecting expression of resistance to pink snow mold caused by Microdochium nivale in winter wheat. Can. J Bot. 74: 1783-1788 https://doi.org/10.1139/b96-215
  23. Simpson, D. R., Rezanoora, H. N., Parryb, D. W. and Nicholsona, P. 2000. Evidence for differential host preference in Microdochium nivale var. majus and Microdochium nivale var. nivale. Plant Pathology 49:261-268 https://doi.org/10.1046/j.1365-3059.2000.00453.x
  24. Smith, J. D. 1980. Snow mold resistance in turf grasses and the need for regional testing. In Proc. 3rd. Int. Turfgrass Res. Conf, 9ed. J. B. Beard), Am. Soc. Agron., Crop Sci. Soc. Am., Soil Sci. Soc. Am. and Int. Turfgrass Soc., pp.275-282
  25. Smith, J. D. 1981. Snow molds of winter cereals: Guide for diagnosis, culture and pathogenicity. Can. J Pathol. 3: 15-25 https://doi.org/10.1080/07060668109501398
  26. Smith, J.D. Jackson, N. and Woolhouse, A.R. 1989. Fungal dis-eases of amenity turfgrasses. 3rd. Ed. E. and F. Spon, London
  27. Vargas, J. M., Jr. 1994. Management of turfgrass diseases. CRC Press, Boca Raton, FL
  28. Vergara, G V., Bughrara, S. S. and lung, G 2004. Genetic variability of grey snow mold (T. incarnata). Mycol. Res. 108: 1283-1290 https://doi.org/10.1017/S0953756204001078
  29. Vincelli, P., Doney, J. C. Jr. and Powell, A. J. 1997. Variation among creeping bentgrass cultivars in recovery from epidemics of dollar spot. Plant Dis. 81 :99-102 https://doi.org/10.1094/PDIS.1997.81.1.99
  30. Wang, J., Casler, M. D., Stier, J. C., Gregos, J. S. and Millet, S. M. 2005. Genotypic variations for snow mold reaction among creeping bentgrass clones. Crop Sci. 45:399-406 https://doi.org/10.2135/cropsci2005.0399
  31. Wod, G L. 1988. Evaluating snow mold control. Golf Course Manage. 58:70-80
  32. Yang, Y., Chen, F. and Hsiang, T. 2006. Fertile sporophore production of Typhula phacorrhiza in the field is related to temperatures near freezing. Can. J Microbiol. 52:9-15 https://doi.org/10.1139/W05-098
  33. Yoshida, M., Abe, J., Moriyama, M., Shimokawa, S. and Nakamura, Y. 1997. Seasonal changes in the physical state of crown water associated with freezing tolerancc in winter wheat. Physiol. Plant 99:363-370 https://doi.org/10.1111/j.1399-3054.1997.tb00548.x