Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.02.2018.0028

Characterization of Sclerotinia sclerotiorum, an Emerging Fungal Pathogen Causing Blight in Hyacinth Bean (Lablab purpureus)  

Prova, Ananya (Department of Plant Pathology, EXIM Bank Agricultural University)
Akanda, Abdul Mannan (Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University)
Islam, Shaikhul (Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University)
Hossain, Md. Motaher (Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University)
Publication Information
The Plant Pathology Journal / v.34, no.5, 2018 , pp. 367-380 More about this Journal
Abstract
Stems and pods of hyacinth bean cultivated in a farmer's field in Gazipur District, Bangladesh, were found rotted in nearly 5% hyacinth bean plants. A fungus having fluffy mycelium and large sclerotia was isolated from affected tissues. Combined results of morphological, molecular and pathological analyses identified the fungus as Sclerotinia sclerotiorum (Lib) de Bary. Inoculating the fungus on healthy hyacinth bean plants and pods reproduced the symptoms previously observed in the field. The three isolates obtained from naturally infected plants were cross inoculated in hyacinth bean, okra and African-American marigold and they were pathogenic to these hosts. The optimum temperature and pH for its growth were $20^{\circ}C$ and pH 5.0, respectively. Sclerotial development was favored at pH 5.0. Sucrose and mannitol were the best carbon sources to support hyphal growth, while glucose was the most favourable for sclerotial development. The hyacinth bean genotypes, HB-82 (Rupban Sheem) and HB-102 were found highly resistant, while HB-94 (Ashina) was moderate resistant to the fungus. Finally, S. sclerotiorum was sensitive to Bavistin, Dithane M-45 and Rovral fungicides and Ca in the form of $CaCl_2$. This observation could possibly aid in eliminating field loss in hyacinth bean caused by an emerging pathogenic fungus S. sclerotiorum.
Keywords
Fungicides; host resistance; mycelial growth; new pathogen; sclerotial development;
Citations & Related Records
연도 인용수 순위
  • Reference
1 National Research Council. 2006. Lablab. In: Lost Crops of Africa Volume II: Vegetables, pp. 190-205. The National Academies Press, Washington DC, USA.
2 Oliver, R. P. and Solomon, P. S. 2010. New developments in pathogenicity and virulence of necrotrophs. Curr. Opin. Plant Biol. 13:415-419.   DOI
3 Prajapati, C. R. and Narain, U. 2008. Effect of fungicides and neem formulations on management of Sclerotinia rot of dolichos bean (Dolichos lablab L.). Agric. Sci. Digest 28:133-135.
4 Prova, A. 2012. Isolation, identification and characterization of white mold disease in marigold (Tagetes officinales L.) and hyacinth bean (Lablab purpureus) caused by Sclerotinia sclerotiorum. M.S. thesis. Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh.
5 Prova, A., Akanda, M. A. M., Islam, S., Sultana, F., Islam, M. T., and Hossain, M. M. 2014. First report of stem and pod blight of hyacinth bean caused by Sclerotinia sclerotiorum. J. Plant Pathol. 96:603-611.
6 Prova, A., Akanda, M. A. M., Islam, S. and Hossain, M. M. 2017. First report of Sclerotinia sclerotiorum cusing pod rot disease on okra in Bangladesh. Can. J. Plant Pathol. 39:72-76.   DOI
7 Phipps, P. M. 1995. An algorithm for prediction outbreaks of Sclerotinia blight of peanut and improving the efficacy of fungicide sprays. Proc. Am. Peanut Res. Educ. Soc. 27:23.
8 Rahman, M. M. E., Dey, T. K., Hossain, D. M., Nonaka, M. and Harada, N. 2015. First report of white mold caused by Sclerotinia sclerotiorum on jackfruit. Aust. Plant Dis. Notes 10:10.   DOI
9 Reis, A., Costa, H. and Lopes, C. A. 2007. Epidemiologia e manejo do mofo-branco em hortalicas. DF: Embrapa Hortalicas, Brasilia, Brasil. 5 pp.
10 Rollins, J. A. and Dickman, M. B. 2001. pH signaling in Sclerotinia sclerotiorum: Identification of a pacC/RIM1 homolog. Appl. Environ. Microbiol. 67:75-81.   DOI
11 Saharan, G. S and Mehta, N. 2008. Sclerotinia diseases of crop plants: Biology, ecology and disease management. Springer, Dordrecht, Netherlands. 486 pp.
12 Sanogo, S. and Puppala, N. 2007. Characterization of darkly pigmented mycelium isolate of Sclerotinia sclerotiorum on valencia peanut in New Mexico. Plant Disease 91:1077-1082.   DOI
13 Schwartz, H. F. and Pastor Corrales, M. A. 1989. Bean production problems in the tropics. 2nd ed. Centro Internacional de Agricultura Tropical, Colombia. 726 pp.
14 Shin, H. J., Kim, C. J. and Kim, S. B. 2007. Optimization of culture medium for rifamycin SV production by Amycolatopsis mediterranei MM2 using statistical designs. Biotechnol. Bioproc. E. 12:457-461.   DOI
15 Singh, N. K., Singh, R. B. and Singh, V. 2014. Efficacy of fungicides and bio-pesticide against the Sclerotinia sclerotiorum causing Sclerotinia rot of Mustard. IOSR-JAVS. 7:20-23.
16 Summerbell, R. C., Moore, M. K., Starink-Willemse, M. and Van Iperen, A. 2007. ITS barcodes for Trichophyton tonsurans and T. equinum. Med. Mycol. 45:193-200.   DOI
17 Tu, J. C. 1997. An integrated control of white mold Sclerotinia sclerotiorum (Lib.) de Bary of beans with emphasis on recent advances in biological control. Bot. Bull. Acad. Sin. 38:73-76.
18 Sundar, A. R., Das, N. D. and Krishnaveni, D. 1995. In-vitro antagonism of Trichoderma spp. against two fungal pathogens of Castor. Indian J. Plant Prot. 23:152-155.
19 Tian, S. P., Fan, Q., Xu, Y. and Jiang, A. L. 2002. Effects of calcium chloride on biocontrol activity of yeast antagonists against the postharvest fungal pathogen Rizopus stolonifer. Plant Pathol. 51:352-358.   DOI
20 Toda, T., Hyakumachi, M., Suga, H., Kageyama, K., Tanaka, A. and Tani, T. 1999. Differentiation of Rhizoctonia AG-D isolates from turfgrass into subgroups I and II based on rDNA and RAPD analysis. Eur. J. Plant Pathol. 105:835-846.   DOI
21 Wang, Y., Duan, Y. B. and Zhou, M. G. 2014. Control of Sclerotinia sclerotiorum infection in oilseed rape with strobilurin fungicide SYP-7017. Can. J. Plant Pathol. 36:354-359.   DOI
22 White, T. J., Bruns, T. D., Lee, S. B. and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, New York, USA.
23 Wilson, C. R., DeLittle, J. A., Wong, J. A. L., Schupp, P. J. and Gibson, L. J. 2005. Adjustment of soil-surface pH and comparison with conventional fungicide treatments for control of lettuce drop (Sclerotinia minor). Plant Pathol. 54:393-400.   DOI
24 Williams, B., Kabbage, M., Kim, H. J., Britt, R. and Dickman, M. B. 2011. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog. 7:e1002107.   DOI
25 Woodward, J. E., Baughman, T. A., Baring, M. R. and Simpson, C. E. 2015. Comparison of three high-oleic peanut cultivars under varying field conditions in the Southwestern United States. Peanut Sci. 42:11-17.   DOI
26 Xing, Y. M., Chen, J., Lv, Y. L., Liang, H. Q. and Guo, S. X. 2011. Determination of optimal carbon source and pH value for sclerotial formation of Polyporus umbellatus under artificial conditions. Mycol. Prog. 10:121-125.   DOI
27 Bardin, S. D. and Huang, H. C. 2001. Research on biology and control of Sclerotinia diseases in Canada. Can. J. Plant Pathol. 23:88-98.   DOI
28 Young, C. S., Smith, J. A., Watling, M., Clarkson, J. P. and Whipps, J. M. 2001. Environmental conditions influencing apothecial production and lettuce infection by Sclerotinia sclerotiorum in field conditions. In: Proceedings of Sclerotinia 2001-the Xl International Sclerotinia Workshop, eds. by C. S. Young and K. J. D. Hughes, pp. 181-182. Central Science Laboratory, York, UK.
29 Akhter, W., Bhuiyan, M. K., Sultana, F. and Hossain, M. M. 2015. Integrated effect of microbial antagonist, organic amendment and fungicide in controlling seedling mortality (Rhizoctonia solani) and improving yield in pea (Pisum sativum L.). C. R. Biol. 338:21-28.   DOI
30 Amselem, J., Cuomo, C. A., van Kan, J. A. L., Viaud, M., Benito, E. P., Couloux, A., Coutinho, P. M., de Vries, R. P., Dyer, P. S., Fillinger, S., Fournier, E., Gout, L., Hahn, M., Kohn, L., Lapalu, N., Plummer, K. M., Pradier, J. M., Quevillon, E., Sharon, A., Simon, A., ten Have, A., Tudzynski, B., Tudzynski, P., Wincker, P., Andrew, M., Anthouard, V., Beever, R. E., Beffa, R., Benoit, I., Bouzid, O., Brault, B., Chen, Z., Choquer, M., Collemare, J., Cotton, P., Danchin, E. G., Da Silva, C., Gautier, A., Giraud, C., Giraud, T., Gonzalez, C., Grossetete, S., Guldener, U., Henrissat, B., Howlett, B. J., Kodira, C., Kretschmer, M., Lappartient, A., Leroch, M., Levis, C., Mauceli, E., Neuveglise, C., Oeser, B., Pearson, M., Poulain, J., Poussereau, N., Quesneville, H., Rascle, C., Schumacher, J., Segurens, B., Sexton, A., Silva, E., Sirven, C., Soanes, D. M., Talbot, N. J., Templeton, M., Yandava, C., Yarden, O., Zeng, Q., Rollins, J. A., Lebrun, M. H. and Dickman, M. 2011. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 7:e1002230.   DOI
31 Bashir, M. and Malik, B. A. 1988. Diseases of major pulse crops in Pakistan-a review. Trop. Pest Manag. 34:309-314.   DOI
32 Boumaaza, B., Benkhelifa, M. and Belkhoudja, M. 2015. Effects of two salts compounds on mycelial growth, sporulation, and spore germination of six isolates of Botrytis cinerea in the western north of Algeria. Int. J. Microbiol. 2015:572626.
33 Chardonnet, C. O., Sams, C. E. and Conway, W. S. 1999. Calcium effect on the mycelial cell walls of Botrytis cinerea. Phytochemistry 52:967-973.   DOI
34 Bangladesh Bureau of Statistics. 2014. Year Book of Agricultural Statistics - 2014. 26th series. Bangladesh Bureau of Statistics, Ministry of Planning, Government of the People's Republic of Bangladesh, Dhaka, Bangladesh. 405 pp.
35 Biggs, A. R. 1999. Effects of calcium salts on apple bitter rot caused by two Colletotrichum spp. Plant Dis. 83:1001-1005.   DOI
36 Bolton, M. D., Thomma, B. P. and Nelson, B. D. 2005. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 7:1-16.
37 Harveson, R. M., Steadman, J. R. and Urrea, C. A. 2010. Integrating planting dates and fungicide applications for managing white mold of dry beans in western Nebraska. Online. Plant Health Prog. doi:10.1094/PHP-2010-0701-02-RS.   DOI
38 Cuong, N. D. and Dohroo, N. P. 2006. Morphological, cultural and physiological studies on Sclerotinia sclerotiorum, causing stalk rot of cauliflower. Omonrice 14:71-77.
39 Dong, X., Ji, R., Guo, X., Foster, S. J., Chen, H., Dong, C., Liu, Y., Hu, Q. and Liu, S. 2008. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta 228:331-340.   DOI
40 Hatcher, P. E. and Paul, N. D. 2001. Plant-pathogen-herbivore interactions and their effects on weeds. In: Biotic Interactions in Plant-Pathogen Associations, eds. by M. J. Jeger and N. J. Spence, pp. 193-225. CABI Publishing, Wallingford, UK.
41 Hayakawa, T., Toda, T., Ping, Q., Mghalu, J. M., Yaguchi, S. and Hyakumachi, M. 2006. A new subgroup of Rhizoctonia AG-D, AG-D III, obtained from Japanese zoysia grass exhibiting symptoms of a new disease. Plant Dis. 90:1389-1394.   DOI
42 Kohn, L. M. 1979. A monographic revision of the genus Sclerotinia. Mycotaxon 9:365-444.
43 Heffer, L. V. and Johnson, K. B. 2007. White Mold. The Plant Health Instructor. doi: 10.1094/PHI-I-2007-0809-01.   DOI
44 Hossain, M. M., Sultana, F., Miyazawa, M. and Hyakumachi, M. 2014. Plant growth-promoting fungus Penicillium spp. GP 15-1 enhances growth and confers protection against damping-off and anthracnose in the cucumber. J. Oleo Sci. 63:391-400.   DOI
45 Huang, H. C., Erickson, R. S., Van Hezewijk, B. and De Clerck-Floate, R. 2005. White mold of Houndstongue (Cynoglossum officinale) caused by Sclerotinia sclerotiorum in Canada. Plant Dis. 89:1013.
46 Islam, S., Akanda, A. M., Prova, A., Islam, M. T. and Hossain, M. M. 2016. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front. Microbiol. 6:1360.
47 Kirk, P. M., Cannon, P., David, J. and Stalpers, J. 2001. Ainsworth and Bisby's Dictionary of the Fungi. 9th ed. CABI Publishing, Wallingford, UK. 655 pp.
48 Mahmoud, A. G. Y. and Zaher, E. H. F. 2015. Why nuclear ribosomal internal transcribed spacer (ITS) has been selected as the DNA barcode for fungi? Adv. Genet. Eng. 4:119.
49 Maouni, A., Lamarti, A., Aidoun, A., Khaddor, M. and Badoc, A. 2007. Effect of benzimidazole fungicides and calcium chloride on Alternaria alternata and Penicillium expansum rot during storage of pears. Afr. J. Biotechnol. 6:1289-1292.
50 McDonald, M. R. and Boland, G. J. 2004. Forecasting diseases caused by Sclerotinia spp. in eastern Canada: fact or fiction? Can. J. Plant Pathol. 26:480-488.   DOI
51 Mueller, D. S., Bradley, C., Grau, C. R., Gaska, J., Kurle, J. E. and Pedersen, W. L. 2004. Application of thiophanate-methyl at different host growth stages for management of Sclerotinia stem rot in soybean. Crop Prot. 23:983-988.   DOI
52 Mendes, M. A. S., da Silva, V. L., Dianese, J. C., Ferreira, M. A. S. V., dos Santos, C. E. N., Gomes Neto, E., Urben, A. F. and Castro, C. 1998. Fungos em Plantas no Brasil. 1st ed. Embrapa, Brasilia, Brasil. 569 pp.