• Title/Summary/Keyword: Host food

Search Result 403, Processing Time 0.031 seconds

Design and Implementation of a Self-diagnosis System on the Eating Disordered Diet (청소년 식사장애 자가진단을 위한 시스템 구현)

  • Kim Kwang-huy
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.3
    • /
    • pp.477-493
    • /
    • 2005
  • The cause of the eating disordered diet, which is a main topic of this study, has not been identified clearly, however, has been affected by an emphasis of western norm of a beauty - being tall and skinny - since the eighties. Another reason would be his/her lack of self-confidence and willingness to resolve his/her unsatisfied mental problem. There are two different of eating disordered diets; anorexia nervosa, bulimia nervosa. firstly, a patient of anorexia nervosa which is characterized by the loss in weight, tends to either deny meals, due to his/her desire to be skinny and a fear of gaining the weight. Secondly, a patient of bulimia nervosa eats much more food than an ordinary person does in around two hours and then removes them by doing vomiting with drugs. obesity is defined as overweight by $20\%$ and more than normal weight. In this case, body mass index(BMI) defined by the ratio of the weight(kg) to the height(m') is used. BMI = Weight(kg) / Height(m) In this paper, a list of questioneire for an adolescent to self-diagnosis the possibility of his/her eating disorder diet is identified and then a multi-media system which incorporates the list is designed and implemented with ASP language as a server language on a local host.

  • PDF

Application of Reverse Transcription Droplet Digital PCR for Detection and Quantification of Tomato Spotted Wilt Virus (Reverse Transcription Droplet Digital PCR을 활용한 Tomato Spotted Wilt Virus 검출 및 정량)

  • Lee, Hyo-Jeong;Park, Ki Beom;Han, Yeon Soo;Jeong, Rae-Dong
    • Research in Plant Disease
    • /
    • v.27 no.3
    • /
    • pp.120-127
    • /
    • 2021
  • Plant viruses cause significant yield losses, continuously compromising crop production and thus representing a serious threat to global food security. Tomato spotted wilt virus (TSWV) is the most harmful plant virus that mainly infects horticultural crops and has a wide host range. Reverse-transcription quantitative real-time PCR (RT-qPCR) has been widely used for detecting TSWV with high sensitivity, but its application is limited owing to the lack of standardization. Therefore, in this study, a sensitive and accurate reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) method was established for TSWV detection. Additionally, we compared the sensitivities of RT-qPCR and RT-ddPCR for TSWV detection. Specificity analysis of RT-ddPCR for TSWV showed no amplification for main pepper viruses and negative control. TSWV transcripts levels measured by RT-ddPCR and RT-qPCR showed a high degree of linearity; however, the former yielded results that were at least 10-fold more sensitive and detected lower TSWV copy numbers than the latter. Collectively, our findings show that RT-ddPCR provides improved analytical sensitivity and specificity for TSWV detection, making it suitable for identifying low TSWV concentrations in field samples.

Research for Intestinal Mucosal Immunity Induced by Salmonella enteritidis Infection (Salmonella enteritidis 감염에 의해 장내 점막에서 유도되는 면역반응에 관한 연구)

  • Lee, Kang-Hee;Lee, Se-Hui;Yang, Jin-Young
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.36-43
    • /
    • 2022
  • Mucosal immunity is a well-designed defense system that builds precise and dynamic relationships against pathogens, and the gastrointestinal tract is the most important organ with this system, acting as a guardian at the forefront of its activity. Salmonella spp. cause food poisoning, entering the body orally and mainly invading the Peyer's patches of the small intestine. Although Salmonella strains share similar mechanisms for inducing innate immunity, different serotypes may have different effects on the intestinal mucosa due to host specificities and pathogenicity. In this study, we evaluated the effects of Salmonella enteritidis infections in mouse intestine and observed significantly reduced dose-dependent survival rates in a challenge test. Flow cytometry data showed no significant differences in intestinal immune cell populations, although histology indicated increased mucin production and decreased goblet cell counts in the Salmonella-treated groups. Furthermore, Claudin expression was significantly decreased in the samples with Salmonella. To investigate the relationship between S. enteritidis infection and inflammatory response, dextran sodium sulfate (DSS) was administered after infection and the results indicate lower survival rate after DSS treatment. In conclusion, we were able to identify the optimal concentration of S. enteritidis to modulate the intestinal mucosal immunity of mice and inflammatory response.

Potentials of Synbiotics for Pediatric Nutrition and Baby Food Applications: A Review (소아 영양 및 유아식 응용을 위한 신바이오틱스의 잠재력: 총설)

  • Jung, Hoo Kil;Kim, Sun Jin;Seok, Min Jeong;Cha, Hyun Ah;Yoon, Seul Ki;Lee, Nah Hyun;Kang, Kyung Jin
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.111-118
    • /
    • 2015
  • Probiotic, prebiotic, and synbiotic substances as well as microorganisms were added to infant formula in an attempt to influence the intestinal microflora with an aim to stimulate the growth of lactic acid bacteria, especially bifidobacteria and lactobacilli. Over the last 10 years, new synbiotic infant formulas containing probiotics and prebiotics have been proposed in order to simulate the effect of breast-feeding on the intestinal microflora. Owing to their synergistic effect, the new synbiotics are expected to be more helpful than using probiotics and prebiotics individually. Maintenance of the viability of the probiotics during food processing and the passage through the gastrointestinal tract should be the most important consideration, since a sufficient number of bacteria ($10^8cfu/g$) should reach the intended location to have a positive effect on the host. Storage conditions and the processing technology used for the manufacture of products such as infant formula adversely affect the viability of the probiotics. When an appropriate and cost-effective microencapsulation methodology using the generally recognized as safe (GRAS) status and substances with high biological value are developed, the quality of infant formulas would improve. The effect of probiotics may be called a double-effect, where one is an immunomodulatory effect, induced by live probiotics that advantageously alter the gastrointestinal microflora, and the other comprises anti-inflammatory responses elicited by dead cells. At present, a new terminology is required to define the dead microorganisms or crude microbial fractions that positively affect health. The term "paraprobiotics" (or ghost probiotics) has been proposed to define dead microbial cells (not damaged or broken) or crude cell extracts (i.e., cell extracts with complex chemical composition) that are beneficial to humans and animals when a sufficient amount is orally or topically administered. The fecal microflora of bottle-fed infants is altered when the milk-based infant formula is supplemented with probiotics or prebiotics. Thus, by increasing the proportion of beneficial bacteria such as bifidobacteria and lactobacilli, prebiotics modify the fecal microbial composition and accordingly regulate the activity of the immune system. Therefore, considerable attention has been focused on the improvement of infant formula quality such that its beneficial effects are comparable to those of human milk, using prebiotics such as inulin and oligosaccharides and potential specific probiotics such as bifidobacteria, which selectively stimulate the proliferation of beneficial bacteria in the microflora and the indigenous intestinal metabolic activity of the microflora.

  • PDF

Distribution and Population Dynamics of Korean Endangered Species; Hipparchia autonoe (Lepidoptera: Nymphalidae) on Mt. Hallasan, Jeju Island, Korea (한국산 멸종위기종 산굴뚝나비(나비목, 네발나비과)의 분포와 개체군 동태)

  • Kim, Do-Sung;Cho, Young-Bok;Kim, Dong-Soon;Lee, Yeong-Don;Park, Seong-Joon;Ahn, Nung-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.5
    • /
    • pp.550-558
    • /
    • 2014
  • This study was conducted to investigate the distribution and the population dynamics of Hipparchia autonoe by using a line transect and Mark-Release-Recapture (MRR) at the Mt. Halla in Jeju Island. The results showed that H. autonoe was found from 1,500 m above the sea level. Total 1,493 H. autonoe with 978 males and 515 females were captured and released in the MRR study site. Among them, 518 individuals including 284 males and 234 females were recaptured. The average survival time was 2.31 days with 2.14 days for males and 3.47 days for females, indicating longer survival time in case of females than males. The daily population size of males estimated in the MRR study site was maintained about 1,000 individuals in July and gradually decreased less than 200 in August. The number of females showed peak at 335 individuals on July 24, and gradually decreased less than 120 in August. Thus, female population was 1/3 of males. The average travel distance of male and female H. autonoe were $116.8{\pm}191.9m$ and $118.4{\pm}161.5m$, respectively, indicating almost same between sexes. H. autonoe in the Mt. Halla formed single population group in the wide meadow around the Baekrokdam Lake. The highest population density of H. autonoe was occurred in the restored area from damages, where host plants such as the sheep's fescue or the food plant are abundant by artificial restoration efforts.

Ultrastructure of the Integument of Capillaria hepatica (syn. Calodium hepatica) (간모세선충(Capillaria hepatica) 표피의 미세구조)

  • Kim, Soo-Jin;Min, Byoung-Hoon;Lee, Haeng-Sook;Lee, Byoung-Wook;Joo, Kyoung-Hwan
    • Applied Microscopy
    • /
    • v.39 no.2
    • /
    • pp.167-173
    • /
    • 2009
  • Capillaria hepatica is a parasitic nematode which causes hepatic capillariasis in rodents and other mammals, including man. Rat species of the genus Rattus are main primary host and rates of genus Rattus of up to 100% have been reported. Infection to reservoir and other mammalian hosts occur incidentally due to ingestion of water or food contaminated with C. hepatica embryonated eggs. The worms mature exclusively inside the liver, but they die and disassemble soon after egg spawning in rats. Dead worms and their eggs cause immune response of focal necrosis and inflammation within the liver. C. hepatica adult with a thin and long body is similar to capillary. The members of Order Trichurida are characterized by having a stichosome and the bacillary bands in front of the body. As already mentioned, the adult C. hepatica residesin the liver, where it deposits groups of eggs, and finally die in the encapsulated tissue of the liver. They produce eggs that elicit a marked granulomatous reaction that eventually destroy the worms. And the adult worms were mixed with eggs. So the complete isolation of the worm and observation of intact ultrastructure is very difficult. In this study, integument structure of C. hepatica isolated from the liver of mouse at 7 weeks after inoculation of embryonated eggs were observed with scanning and transmission electron microscopy. As a results, body length of isolated C. hepatica was about 99 mm. Cuticle, bacillary band and bacillary pore were obtained in the integument of worm. Bacillary pore across cuticular surface of the worm were observed. According to the existence of cap material, external forms of bacillary pore can be divided into three types such as flat, ingression, and ingression with the cap material type. The complete isolation of the worm and observation of ultrastructure of integument will provide the fundamental data which is important in the nematode research including C. hepatica.

Seasonal Occurrence, Development and Preference of Riptortus pedestris on Hairy Vetch (헤어리베치에서 톱다리개미허리노린재 발생양상 및 기주에 따른 발육 및 선호성)

  • Seo, Mi-Ja;Kwon, Hye-Ri;Yoon, Kyu-Sik;Kang, Min-A;Park, Min-Woo;Jo, Shin-Hyuk;Shin, Hyo-Seob;Kim, Sae-Hee;Kang, Eun-Jin;Yu, Yong-Man;Youn, Young-Nam
    • Korean journal of applied entomology
    • /
    • v.50 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • The seasonal occurrence of Riptortus pedestris Fabricius was investigated using pheromone traps baited with its aggregation pheromone in the fields with various crop composition (mixture culture of barley and hairy vetch in Asan, Chungnam; monoculture of hairy vetch in Yuseung, Daejeon) from mid-May to mid-July of seed gathering season in 2010. The invasion of R. pedestris into the experimental fields began to increase rapidly from late-June in which period hairy vetch and barley reach the beginning of seed formation stage. After seed gathering season in mid-July, the invasion rate of R. pedestris decreased, and the activity was continually observed till early-November. In addition to dominant R. pedestris species, 33 species of hemiptera including Apolyaus watajii, Dolycoris baccarum, Adelphocoris suturalis, and Yemma exlis were collected, which indicated abundant species diversity in the hairy vetch fields. In the laboratory, R. pedestris did not developed successfully to adult stage on food sources of hairy vetch, with decreasing survival rate after 4th instar and the failure of emergence to adult stage. Also, R. pedestris showed higher preference on soybeans than hairy vetch. Consequently, hairy vetch may be not true host for the development and survival of R. pedestris. It is considered that R. pedestris is a temporary visitor at the season of seed formation in hairy vetch fields.

Spatial Variation in the Reproductive Effort of Mania Clam Ruditapes philippinarum during Spawning and Effects of the Protozoan Parasite Perkinsus olseni Infection on the Reproductive Effort (여름철 산란기에 있어 바지락 번식량의 공간적 변이와 기생 원생생물 Perkinsus olseni 감염이 바지락 번식에 미치는 영향)

  • Kang, Hyun-Sil;Hong, Hyun-Ki;Yang, Hyun-Sung;Park, Kyung-Il;Lee, Taek-Kyun;Kim, Young-Ok;Choi, Kwang-Sik
    • Ocean and Polar Research
    • /
    • v.37 no.1
    • /
    • pp.49-59
    • /
    • 2015
  • Spatial variation in the reproductive effort of Manila clam Ruditapes philippinarum is often closely associated with variation in the seawater temperature and food availability, which determines gonad maturity and the quantity of gamates produced during spawning. Previous studies also have reported that severe infection by the protozoan parasite Perkinsus olseni exerts a negative impact on clam reproduction, retarding gonad maturation or decreasing the reproductive effort. In the present study, we investigated impacts of P. olseni infection on the reproductive condition of Manila clam during a spawning season. Histology revealed that 54% of female clams in Wando off the south coast were in spawning, while only 10% of the female from Gomso and 0% of the female from Seonjaedo in Gyeonggi bay off the west coast were engaged in spawning at the end of May in 2004. Ray's fluid thioglycollate media (RFTM) assay was applied to assess P. olseni infection and indicated that the infection intensity in Wando ($3,608,000{\pm}258,000cells/g$ wet tissue) was significantly higher than the levels in Gomso ($1,305,000{\pm}106,000cells/g$ wet tissue) and Seonjaedo ($1,083,000{\pm}137,000cells/g$ wet tissue, p < 0.001). The size of the ripe female follicle determined from histology was significantly smaller in Wando ($0.032mm^2$) compared to the sizes in Gomso ($0.059mm^2$) and Seonjaedo ($0.052mm^2$, p < 0.05). Accordingly, the number of ripe eggs in the follicle was significantly fewer among clams in Wando (14) compared to the numbers determined in Gomso (23) and Seonjaedo (22). The absolute quantity of egg in ripe clams from Wando (31.01 mg) was also significantly smaller than Seonjaedo (61.79 mg) and Gomso (133.3 mg). Quantity of total protein, carbohydrate, and lipid in the tissue in the Wando samples was significantly smaller than the quantities determined in Gomso and Seonjaedo (p < 0.001). The observed poor reproductive condition and proximate tissue composition of the females in Wando were, in part, explained by the extremely high level of the parasites, sapping the ability to store energy in the host tissues, which is used in tissue growth and the egg production.

Phellinus linteus Extract Regulates Macrophage Polarization in Human THP-1 Cells (상황버섯 추출물의 인간 유래 THP-1 단핵구 세포주의 분극화 조절)

  • Lee, Sang-Yull;Park, Sul-Gi;Yu, Sun-Nyoung;Kim, Ji-Won;Hwang, You-Lim;Kim, Dong-Seob;Ahn, Soon-Cheol
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.113-121
    • /
    • 2020
  • Macrophages are initiators for regulating a host's defenses to eliminate pathogens and trigger tissue repair. Macrophages are classified into two types: classically (M1) activated macrophages and alternatively (M2) activated macrophages. M1-phenotype macrophages directly or indirectly kill infectious organisms and tumor cells via pro-inflammatory responses, whereas M2-phenotype macrophages remodel wounded tissue through anti-inflammatory responses. In this paper, we investigated how Phellinus linteus hot water extract passed from Diaion HP-20 resin (PLEP) regulates polarization of M1-like or M2-like macrophages in human THP-1 cells. PLEP did not have cytotoxicity at a high concentration of 300 ㎍/ml. We observed morphological alteration of the THP-1 cells, which are stimulated by PLEP, LPS/INF-γ (M1 stimulators) or IL-4/IL13 (M2 stimulators). PLEP exposure induced morphology contiguous with LPS/INF-γ. qPCR was also performed to determine whether PLEP influences M1 or M2 polarization-related genes. M1-phenotype macrophage-specific genes, such as TNF-α, IL-1β, IL-6, IL-8, CXCL10 and CCR7, were enhanced by PLEP in a dose-dependent manner similar to LPS/INF-γ. Conversely, M2-phenotype-specific genes, such as MRC-1, DC-SIGN, CCL17 and CCL22, were suppressed by PLEP. PLEP also significantly up-regulated secretory inflammation cytokines related to M1 polarization of macrophages, including TNFα, IL-1β and IL-6, which was similar to the gene expression. Further, MAPK and NF-κB signaling were increased by treatment with PLEP, resulting in enhancement of cytokine secretion. PLEP might therefore be used as a promising booster of pro-inflammatory responses through M1 polarization of human THP-1 cells.

Current Status and Prospects of Various Methods used for Screening Probiotic Microorganisms (Probiotic 미생물 검사에 사용되는 다양한 방법들에 대한 현황과 향후 전망)

  • Kim, Dong-Hyeon;Kim, Hong-Seok;Jeong, Dana;Chon, Jung-Whan;Kim, Hyunsook;Kim, Young-Ji;Kang, Il-Byung;Lee, Soo-Kyung;Song, Kwang-Young;Park, Jin-Hyeong;Chang, Ho-Seok;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.203-216
    • /
    • 2016
  • Probiotic microorganisms are thought to provide health benefits when consumed. In 2001, the World Health Organization defined probiotics as "live microorganisms which confer a health benefit on the host, when administered in adequate amounts." Three methods for screening potential probiotics have currently widely available. (1) In vitro assays of potential probiotics are preferred because of their simplicity and low cost. (2) The use of in vivo approaches for exploring various potential probiotics reflects the enormous diversity in biological models with various complex mechanisms. (3) Potential probiotics have been analyzed using several genetic and omics technologies to identify gene expression or protein production patterns under various conditions. However, there is no ideal procedure for selecting potential probiotics than testing cadidate strains on the target population. Hence, in this review, we provide an overview of the different methodologies used to identify new probiotic strains. Furthermore, we describe futre perspectives for the use of in vitro, in vivo and omics in probiotic research.