Browse > Article
http://dx.doi.org/10.22424/jmsb.2016.34.4.203

Current Status and Prospects of Various Methods used for Screening Probiotic Microorganisms  

Kim, Dong-Hyeon (Center for One Health, College of Veterinary Medicine, Konkuk University)
Kim, Hong-Seok (Center for One Health, College of Veterinary Medicine, Konkuk University)
Jeong, Dana (Center for One Health, College of Veterinary Medicine, Konkuk University)
Chon, Jung-Whan (Center for One Health, College of Veterinary Medicine, Konkuk University)
Kim, Hyunsook (Dept. of Food & Nutrition, College of Human Ecology, Hanyang University)
Kim, Young-Ji (Center for One Health, College of Veterinary Medicine, Konkuk University)
Kang, Il-Byung (Center for One Health, College of Veterinary Medicine, Konkuk University)
Lee, Soo-Kyung (Center for One Health, College of Veterinary Medicine, Konkuk University)
Song, Kwang-Young (Center for One Health, College of Veterinary Medicine, Konkuk University)
Park, Jin-Hyeong (Center for One Health, College of Veterinary Medicine, Konkuk University)
Chang, Ho-Seok (Center for One Health, College of Veterinary Medicine, Konkuk University)
Seo, Kun-Ho (Center for One Health, College of Veterinary Medicine, Konkuk University)
Publication Information
Journal of Dairy Science and Biotechnology / v.34, no.4, 2016 , pp. 203-216 More about this Journal
Abstract
Probiotic microorganisms are thought to provide health benefits when consumed. In 2001, the World Health Organization defined probiotics as "live microorganisms which confer a health benefit on the host, when administered in adequate amounts." Three methods for screening potential probiotics have currently widely available. (1) In vitro assays of potential probiotics are preferred because of their simplicity and low cost. (2) The use of in vivo approaches for exploring various potential probiotics reflects the enormous diversity in biological models with various complex mechanisms. (3) Potential probiotics have been analyzed using several genetic and omics technologies to identify gene expression or protein production patterns under various conditions. However, there is no ideal procedure for selecting potential probiotics than testing cadidate strains on the target population. Hence, in this review, we provide an overview of the different methodologies used to identify new probiotic strains. Furthermore, we describe futre perspectives for the use of in vitro, in vivo and omics in probiotic research.
Keywords
human health; probiotic; in vitro; in vivo; omics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bernardeau, M., Guguen, M. and Vernoux, J. P. 2006. Beneficial lactobacilli in food and feed: Long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol. Rev. 30:487-513.   DOI
2 Botta, C., Langerholc, T., Cencic, A. and Cocolin, L. 2014. In vitro selection andcharacterization of new probiotic candidates from table olive microbiota. PLoSONE 9: e94457.   DOI
3 Bover-Cid, S. and Holzapfel, W. H. 1999. Improved screening procedure forbiogenic amine production by lactic acid bacteria. Int. J. Food. Microbiol. 53:33-41.   DOI
4 Bron, P., Van Bokhorst-Van De Veen, H., Wels, M. and Kleerebezem, M. 2011. "Engineering robust lactic acid bacteria," in Stress Responses of Lactic Acid Bacteria,eds E. Tsakalidou and K. Papadimitriou (New York: Springer), 369-394.
5 Burns, A. J. and Rowland, I. R. 2004. Antigenotoxicity of probiotics and prebioticson faecal water-induced DNA damage in human colon adenocarcinoma cells. Mutat. Res. 551:233-243.   DOI
6 Mack, D. R., Ahrne, S., Hyde, L., Wei, S. and Hollingsworth, M. A. 2003. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52:827-833.   DOI
7 Martin, F. P., Wang, Y., Sprenger, N., Yap, I. K., Rezzi, S., Ramadan, Z., van Bladeren, P., Fay, L.B., Kochhar, S., Lindon, J.C., Holmes, E. and Nicholson, J.K. 2008. Top-down systems biology integration of conditional prebiotic modulated transgenomic interactions in a humanized microbiome mouse model. Mol. Syst. Biol. 4:205.
8 McKay, D. M., Philpott, D. J. and Perdue, M. H. 1997. Review article: In vitro models in inflammatory bowel disease research-a critical review. Aliment. Pharmacol. Ther. 11(Suppl. 3):70-80.
9 Meijerink, M., Van Hemert, S., Taverne, N., Wels, M., De Vos, P., Bron, P. A., Savelkoul, H.F., van Bilsen, J., Kleerebezem, M. and Wells, J.M. 2010. Identification of genetic loci in Lactobacillus plantarumthat modulatethe immune response of dendritic cells using comparative genome hybridization. PLoS ONE 5:e10632.   DOI
10 Miquel, S., Martin, R., Rossi, O., Bermudez-Humaran, L. G., Chatel, J. M., Sokol, H., Thomas, M., Well, J.M. and Langella, P. 2013. Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 16, 255-261.   DOI
11 Mitsuma, T., Odajima, H., Momiyama, Z., Watanabe, K., Masuguchi, M., Sekine,T., Shidara, S. and Hirano, S. 2008. Enhancement of gene expression by a peptide p(CHWPR) produced by Bifidobacterium lactis BB-12. Microbiol. Immunol. 52:144-155.   DOI
12 Lee, J., Kim, Y., Yun, H. S., Kim, J. G., Oh, S. and Kim, S. H. 2010. Genetic and proteomic analysis of factors affecting serum cholesterol reduction by Lactobacillu sacidophilus A4. Appl. Environ. Microbiol. 76:4829-4835.   DOI
13 Cencic, A. and Langerholc, T. 2010. Functional cell models of the gut and their applications in food microbiology-a review. Int. J. Food Microbiol. 141 (Suppl. 1):S4-S14.   DOI
14 Campieri, C., Campieri, M., Bertuzzi, V., Swennen, E., Matteuzzi, D., Stefoni, S., Pirovano, F., Centi, C., Ulisse, S., Famularo, G. and De Simone, C. 2001. Reduction of oxaluria after an oral course of lactic acidbacteria at high concentration. Kidney Int. 60:1097-1105.   DOI
15 Cani, P., Everard,A., Belzer, C. and De, V. W. 2014. Use of Akkermansia for Treating Metabolic Disorders. Patent no. WO2014075745A1.
16 Castro, M. S., Molina, M. A., Di Sciullo, P., Azpiroz, M. B., Leocata Nieto, F., SterinSpeziale, N. B., Mongini, C. and Manghi, M.A. 2010. Beneficial activity of Enterococcus faecalis CECT7121 in the anti-lymphoma protective response. J. Appl. Microbiol. 109:1234-1243.   DOI
17 Moslehi-Jenabian, S., Vogensen, F. K. and Jespersen, L. 2011. The quorum sensing luxSgene is induced in Lactobacillus acidophilus NCFM inresponse to Listeria monocytogenes. Int. J. Food Microbiol. 149:269-273.   DOI
18 Choi, S. S., Kim, Y., Han, K. S., You, S., Oh, S. and Kim, S. H. 2006. Effects of Lactobacillus strains on cancer cell proliferation and oxidative stress in vitro. Lett. Appl. Microbiol. 42:452-458.   DOI
19 Coman, M. M., Verdenelli, M. C., Cecchini, C., Silvi, S., Orpianesi, C., Boyko, N. and Cresci, A. 2014. In vitro evaluation of antimicrobial activity of Lactobacillus rhamnosus IMC 501(R), Lactobacillus paracasei IMC 502(R) and SYNBIO(R) against pathogens. J. Appl. Microbiol. 117: 518-527   DOI
20 Corr, S. C., Li, Y., Riedel, C. U., O'toole, P. W., Hill, C. and Gahan, C. G. 2007. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl. Acad. Sci. U.S.A. 104: 7617-7621.   DOI
21 Munoz-Provencio, D., Rodriguez-Diaz, J., Collado, M. C., Langella, P., BermudezHumaran, L. G. and Monedero, V. 2012. Functional analysis of the Lactobacillus casei BL23 sortases. Appl. Environ. Microbiol. 78:8684-8693.   DOI
22 Nybom, S. M., Salminen, S. J. and Meriluoto, J. A. 2008. Specific strains of probiotic bacteria are efficient in removal of several different cyanobacterial toxinsfrom solution. Toxicon 52:214-220.   DOI
23 Papadimitriou, K., Zoumpopoulou, G., Foligne, B., Voula Alexandraki, Kazou M., Pot, B. and Tsakalidou, E. 2015. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Frontiers in Microbiology 6:58.
24 Papadimitriou, C. G., Vafopoulou-Mastrojiannaki, A., Silva, S. V., Gomes, A.-M., Malcata, F. X. and Alichanidis, E. 2007. Identification of peptides in traditional and probiotic sheep milk yoghurt with angiotensin I converting enzyme (ACE)-inhibitory activity. Food Chem. 105:647-656.   DOI
25 Pisano, M. B., Viale, S., Conti, S., Fadda, M. E., Deplano, M., Melis, M. P., Deiana, M. and Cosentino, S. 2014. Preliminary evaluation of probiotic properties of Lactobacillus strains isolated from Sardinian dairy products. Biomed. Res. Int. 2014:286390.
26 Pompei, A., Cordisco, L., Amaretti, A., Zanoni, S., Matteuzzi, D. and Rossi, M. 2007. Folate production by bifidobacteria as a potential probiotic property. Appl. Environ. Microbiol. 73:179-185.   DOI
27 Rijkers, G. T., Bengmark, S., Enck, P., Haller, D., Herz, U., Kalliomaki, M., Kudo, S., Lenoir-Wijnkoop, I., Mercenier, A., Myllyluoma, E., Rabot, S., Rafter, J., Szajewska, H., Watzl, B., Wells, J., Wolvers, D. and Antoine, J. 2010. Guidance for substantiating the evidence for beneficial effects of probiotics: Current status and recommendations for future research. J. Nutr. 140:671S-676S.   DOI
28 Pool-Zobel, B. L., Neudecker, C., Domizlaff, I., Ji, S., Schillinger, U., Rumney, C., Moretti, M., Vilarini, I., Scassellati-Sforzolini, R. and Rowland, I. 1996. Lactobacillus- and Bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutr. Cancer 26:365-380.   DOI
29 Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Dore, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., MetaHIT Consortium, Bork, P., Ehrlich, S. and Wang, J. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59-65.   DOI
30 Ravel, J., Blaser, M., Braun, J., Brown, E., Bushman, F., Chang, E., Davies, J., Dewey, K. G., Dinan, T., Dominguez-Bello, M., Erdman, S. E., Finlay, B., Garrett, W., Huffnagle, G., Huttenhower, C., Jansson, J., Jeffery, I., Jobin, C., Khoruts, A., Kong, H., Lampe, J., Ley, R., Littman, D., Mazmanian, S., Mills, D., Neish, A., Petrof, E., Relman, D., Rhodes, R., Turnbaugh, P., Young, V., Knight, R. and White, O. 2014. Human microbiome science: vision for the future, Bethesda, MD, July 24 to 26,2013. Microbiome 2:16.   DOI
31 Siniscalco, D. and Antonucci, N. 2013. Involvement of dietary bioactive proteinsand peptides in autism spectrum disorders. Curr. Protein Pept. Sci. 14:674-679.
32 Corthesy, B., Gaskins, H. R. and Mercenier, A. 2007. Cross-talk between probioticbacteria and the host immune system. J. Nutr. 137:781S-790S.   DOI
33 Cousin, F. J., Jouan-Lanhouet, S., Dimanche-Boitrel, M.-T., Corcos, L. and Jan, G. 2012. Milk fermented by Propionibacterium freudenreichii inducesapoptosis of HGT-1 human gastric cancer cells. PLoS ONE 7: e31892.   DOI
34 Saulnier, D. M., Santos, F., Roos, S., Mistretta, T. A., Spinler, J. K., Molenaar, D., Teusink, B., and Versalovic, J. 2011. Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features. PLoS ONE 6:e18783.   DOI
35 Schlee, M., Wehkamp, J., Altenhoefer, A., Oelschlaeger, T. A., Stange, E. F. and Fellermann, K. 2007. Induction of human ${\beta}$-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect. Immun. 75:2399-2407.   DOI
36 Duangjitcharoen, Y., Kantachote, D., Prasitpuripreecha, C., Peerajan, S. and Chaiyasut, C. 2014. Selection and characterisation of probiotic lactic acid bacteria with heterocyclic amine binding and nitrosamine degradation properties. J. Appl. Pharm. Sci. 4:014-023.
37 Eaton, K. A., Honkala, A., Auchtung, T. A. and Britton, R. A. 2011. Probiotic Lactobacillus reuteriameliorates disease due to enterohemorrhagic Escherichia coli in germfree mice. Infect. Immun. 79:185-191.   DOI
38 Ewaschuk, J. B., Diaz, H., Meddings, L., Diederichs, B., Dmytrash, A., Backer, J., Looijer-van Langen, M. and Madsen, K.L. 2008. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 295:G1025-G1034.   DOI
39 Sela, D. A., Chapman, J., Adeuya, A., Kim, J. H., Chen, F., Whitehead, T. R., Lapidus, A., Rokhsar, D.S., Lebrilla, C.B., German, J.B., Price, N.P., Richardson, P.M. and Mills, D.A. 2008. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl. Acad. Sci. U.S.A. 105: 18964-18969.   DOI
40 Shimada, Y., Watanabe, Y., Wakinaka, T., Funeno, Y., Kubota, M., Chaiwangsri, T., Kurihara, S., Yamamoto. K., Katayama, T. and Ashida, H. 2015. $\alpha$-N-Acetylglucosaminidase from Bifidobacterium bifidum specifically hydrolyzes $\alpha$-linked N-acetylglucosamine at nonreducingterminus of O-glycan on gastric mucin. Appl. Microbiol. Biotechnol. 99:3941-3948.   DOI
41 Sodhi, C. P., Neal, M. D., Siggers, R., Sho, S., Ma, C., Branca, M. F., Prindle, T., Jr., Russo, A. M., Afrazi, A., Good, M., Brower-Sinning, R., Firek, B., Morowitz, M.J., Ozolek, J. A., Gittes, G. K., Billiar, T. R. and Hackam, D. J. 2012. Intestinal epithelial toll-like receptor 4 regulates goblet cell development and is required for necrotizing enterocolitis in mice. Gastroenterology 143:708-718, e701-e705.
42 Tassell, M. L. V., and Miller, M. J. 2011. Lactobacillus adhesion to mucus. Nutrients 3:613-636.   DOI
43 Fanning, S., Hall, L. J., Cronin, M., Zomer, A., Macsharry, J., Goulding, D., Motherway, M.O., Shanahan, F., Nally, K., Dougan, G. and van Sinderen, D. 2012. Bifidobacterial surface-exopolysaccharide facilitates commensalhost interaction through immune modulation and pathogen protection. Proc. Natl. Acad. Sci. U.S.A. 109:2108-2113.   DOI
44 Faridnia, F., Hussin, A. S., Saari, N., Mustafa, S., Yee, L. Y. and Manap, M. Y. 2010. In vitro binding of mutagenic heterocyclic aromatic amines by Bifidobacterium pseudocatenulatum G4. Benef. Microbes 1:149-154.   DOI
45 Foligne, B., Nutten, S., Grangette, C., Dennin, V., Goudercourt, D., Poiret, S., Dewulf, J., Brassart, D., Mercenier, A. and Pot, B. 2007. Correlation between in vitro and in vivo immunomodulatoryproperties of lactic acid bacteria. World J. Gastroenterol. 13:236-243.   DOI
46 Steinberg, R. S., Silva, L. C., Souza, T. C., Lima, M. T., De Oliveira, N. L., Vieira, L. Q., Aranes, R., Miyoshi, A., Ricoli, J., Neumann, E. and Nunes, A. 2014. Safety and protective effectiveness of two strains of Lactobacillus with probiotic features in an experimental model of salmonellosis. Int. J. Environ. Res. Public Health 11:8755-8776.   DOI
47 Tan, Q., Xu, H., Aguilar, Z. P., Peng, S., Dong, S., Wang, B., Li, P., Chen, T., Yu, F. and Wei, H. 2013. Safety assessment and probiotic evaluation of Enterococcus faecium YF5 isolated from sourdough. J. Food Sci. 78:M587-M593.   DOI
48 Garcia-Cayuela, T., Korany, A. M., Bustos, I., Gomez De Cadinanos, L. P., Requena, T., Pelaez, C. and Martinez-Cuesta, M.C. 2014. Adhesion abilities of dairy Lactobacillus plantarumstrains showing an aggregation phenotype. Food Res. Int. 57:44-50.   DOI
49 Fujii, T., Ingham, C., Nakayama, J., Beerthuyzen, M., Kunuki, R., Molenaar, D., Sturme, M., Vaughan, E., Kleerebezem, M. and de Vos, W. 2008. Two homologous Agr-like quorum-sensing systems cooperatively control adherence, cell morphology, and cell viability properties in Lactobacillus plantarum WCFS1. J. Bacteriol. 190:7655-7665.   DOI
50 Fukuda, S., Toh, H., Taylor, T. D., Ohno, H. and Hattori, M. 2012. Acetate producing bifidobacteria protect the host from enteropathogenic infection viacarbohydrate transporters. Gut Microbes 3:449-454.   DOI
51 Gilad, O., Svensson, B., Viborg, A. H., Stuer-Lauridsen, B. and Jacobsen, S. 2011. The extracellular proteome of Bifidobacterium animalis subsp. lactis BB-12 reveals proteins with putative roles in probiotic effects. Proteomics 11: 2503-2514.   DOI
52 Turroni, F., Serafini, F., Foroni, E., Duranti, S., O'connellMotherway, M., Taverniti, V., Mangifesta, M., Milani, C., Viappiani, A., Roversi, T., Sanchez, B., Santoni, A., Gioiosa, L., Ferrarini, A., Delledonne, M., Margolles, A., Piazza, L., Palanza, P., Bolchi, A., Guglielmetti, S., van Sinderen, D. and Ventura, M. 2013. Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions. Proc. Natl. Acad. Sci. U.S.A. 110:11151-11156.   DOI
53 Gueimonde, M. and Collado, M. C. 2012. Metagenomics and probiotics. Clin. Microbiol. Infect. 18(Suppl. 4):32-34.   DOI
54 Hamon, E., Horvatovich, P., Izquierdo, E., Bringel, F., Marchioni, E., Aoude-Werner, D. and Ennahar, S. 2011. Comparative proteomic analysis of Lactobacillus plantarum for the identification of key proteins in bile tolerance. BMC Microbiol. 11:63.   DOI
55 Harty, D. W., Oakey, H. J., Patrikakis, M., Hume, E. B. and Knox, K. W. 1994. Pathogenic potential of lactobacilli. Int. J. Food Microbiol. 24:179-189.   DOI
56 Turpin, W., Humblot, C., Noordine, M. L., Thomas, M. and Guyot, J. P. 2012. Lactobacillaceae and cell adhesion: Genomic and functional screening. PLoS ONE7:e38034.   DOI
57 Turroni, F., Foroni, E., O'connellMotherway, M., Bottacini, F., Giubellini, V., Zomer, A., Ferrarini, A., Delledonne, M., Zhang, Z., van Sinderen, D. and Ventura, M. 2010. Characterization of the serpin-encoding gene of Bifidobacterium breve 210B. Appl. Environ. Microbiol. 76:3206-3219.   DOI
58 Upadrasta, A., Stanton, C., Hill, C., Fitzgerald, G. and Ross, R. P. 2011. "Improvingthe stress tolerance of probiotic cultures: recent trends and future directions," inStress Responses of Lactic Acid Bacteria, eds E. Tsakalidou and K. Papadimitriou (New York: Springer), 395-438.
59 Van den Abbeele, P., Roos, S., Eeckhaut, V., Mackenzie, D. A., Derde, M., Verstraete,W., Marzorati, M., Possemiers, S., Vanhoecke, B., Van Immerseel, F. and Van de Wiele, T. 2012. Incorporating a mucosal environment in a dynamic gut modelresults in a more representative colonization by lactobacilli. Microb. Biotechnol. 5:106-115.   DOI
60 Helm, R. M. and Burks, A. W. 2002. Animal models of food allergy. Curr. Opin. Allergy Clin. Immunol. 2:541-546.   DOI
61 Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W. Z., Strowig, T., Thaiss, C.A., Kau, A.L., Eisenbarth, S.C. and Jurczak, M.J. 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179-185.   DOI
62 Hsiao, E. Y., Mcbride, S. W., Hsien, S., Sharon, G., Hyde, E. R., Mccue, T., Codelli, J.A., Chow, J., Reisman, S.E., Petrosino, J.F., Patterson, P.H. and Mazmanian, S.K. 2013. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155: 1451-1463.   DOI
63 Hughes, D. B. and Hoover, D. G. 1995. Viability and enzymatic activity of bifidobacteria in milk. J. Dairy Sci. 78:268-276.   DOI
64 Ito, M., Kobayashi, K. and Nakahata, T. 2008. "NOD/Shi-scid IL2r${\gamma}$null (NOG) mice more appropriate for humanized mouse models," in Humanized Mice, eds T. Nomura, T. Watanabe, and S. Habu (Berlin: Springer), 53-76.
65 Kim, J. F., Jeong, H., Yu, D. S., Choi, S. H., Hur, C. G., Park, M. S., Yoon, S.H., Kim, D.W., Ji, G.E., Park, H.S. and Oh, T.K. 2009. Genome sequence of the probiotic bacterium Bifidobacterium animalis subsp. lactis AD011. J. Bacteriol. 191:678-679.   DOI
66 Vastano, V., Salzillo, M., Siciliano, R. A., Muscariello, L., Sacco, M. and Marasco, R. 2014. The E1 betasubunit of pyruvate dehydrogenase is surface-expressed in Lactobacillus plantarum and binds fibronectin. Microbiol. Res. 169: 121-127.   DOI
67 Verdu, E. F. and Collins, S. M. 2004. Microbial-gut interactions in health anddisease. Irritable bowel syndrome. Best Pract. Res. Clin. Gastroenterol. 18:315-321.   DOI
68 Jacobi, C. A., Grundler, S., Hsieh, C. J., Frick, J. S., Adam, P., Lamprecht, G., Autenrieth, I., Gregor, M. and Malfertheiner, P. 2012. Quorum sensing in the probiotic bacterium Escherichia coli Nissle 1917 (Mutaflor) - evidence that furanosyl borate diester (AI-2) is influencingthe cytokine expression in the DSS colitis mouse model. Gut Pathog. 4:8.   DOI
69 Jin, J., Zhang, B., Guo, H., Cui, J., Jiang, L., Song, S., Sun, M. and Ren, F. 2012. Mechanism analysis of acid tolerance response of Bifidobacterium longum subsp. longum BBMN 68 by gene expression profile using RNA-sequencing. PLoS ONE 7:e50777.   DOI
70 Kikuchi, Y., Kunitoh-Asari, A., Hayakawa, K., Imai, S., Kasuya, K., Abe, K., Adachi, Y., Fukudome, S., Takahashi, Y. and Hachimura, S. 2014. Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection inmice. PLoS ONE 9:e86416.   DOI
71 Kim, J. Y., Park, B. K., Park, H. J., Park, Y. H., Kim, B. O. and Pyo, S. 2013. Atopic dermatitis-mitigating effects of new Lactobacillus strain, Lactobacillus sakei probio65 isolated from Kimchi. J. Appl. Microbiol. 115:517-526.   DOI
72 Kinoshita, H., Imoto, S., Suda, Y., Ishida, M., Watanabe, M., Kawai, Y., Kitazawa, H., Miura, K., Horii, A. and Saito, T. 2013. Proposal of screening method for intestinal mucus adhesive lactobacilli using the enzymatic activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Anim. Sci. J. 84:150-158.   DOI
73 Yoshida, E., Sakurama, H., Kiyohara, M., Nakajima, M., Kitaoka, M., Ashida, H., Hirose, J., Katayama, T., Yamamoto, K. and Kumagai, H. 2012. Bifidobacterium longum subsp. infantis uses two different ${\beta}$-galactosidases for selectively degrading type-1 and type-2 human milkoligosaccharides. Glycobiology 22: 361-368.   DOI
74 Viaud, S., Saccheri, F., Mignot, G., Yamazaki, T., Daillere, R., Hannani, D., Enot, D., Pfirschke, C., Engblom, C., Pittet, M., Schlitzer, A., Ginhoux, F., Apetoh, L., Chachaty, E., Woerther, P., Eberl, G., Berard, M., Ecobichon, C., Clermont, D., Bizet, C., Gaboriau-Routhiau, V., Cerf-Bensussan, N., Opolon, P., Yessaad, N., Vivier, E., Ryffel, B., Elson, C., Dore, J., Kroemer, G., Lepage, P., Boneca, I., Ghiringhelli, F. and Zitvogel, L. 2013. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342:971-976.   DOI
75 Wang, L., Cao, H., Liu, L., Wang, B., Walker, W. A., Acra, S.A. and Yan, F. 2014. Activation of epidermal growth factor receptor mediates mucin production stimulated byp40, a Lactobacillus rhamnosus GG-derived protein. J. Biol. Chem. 289:20234-20244.   DOI
76 Westermann, C., Zhurina, D., Baur, A., Shang, W., Yuan, J. and Riedel, C. 2012. Exploring the genome sequence of Bifidobacterium bifidum S17 for potential players in host-microbe interactions. Symbiosis 58: 191-200.   DOI
77 An, H., Douillard, F. P., Wang, G., Zhai, Z., Yang, J., Song, S., Cui, J., Ren, F., Luo, Y., Zhang, B. and Hao, Y. 2014. Integratedtranscriptomic and proteomic analysis of the bile stress response in a centenarianoriginated probiotic Bifidobacterium longum BBMN68. Mol. Cell Proteomics. 13:2558-2572.   DOI
78 Koponen, J., Laakso, K., Koskenniemi, K., Kankainen, M., Savijoki, K., Nyman, T. A., de Vos W.M., Tynkkynen, S., Kalkkinen, N. and Varmanen, P. 2012. Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG. J. Proteomics 75:1357-1374.   DOI
79 Koskenniemi, K., Laakso, K., Koponen, J., Kankainen, M., Greco, D., Auvinen, P., Savijoki, K., Nyman, T.A., Surakka, A., Salusjarvi, T., de Vos, W.M., Tynkkynen, S., Kalkkinen, N. and Varmanen, P. 2011. Proteomics and transcriptomics characterization of bile stressresponse in probiotic Lactobacillus rhamnosus GG. Mol. Cell. Proteomics 10, M110.002741.   DOI
80 Zheng, Y., Lu, Y., Wang, J., Yang, L., Pan, C. and Huang, Y. 2013. Probioticproperties of Lactobacillus strains isolated from Tibetan kefir grains. PLoS ONE8: e69868.   DOI
81 Le Roy, T., Llopis, M., Lepage, P., Bruneau, A., Rabot, S., Bevilacqua, C., Martin, P., Philippe, C., Walker, F., Bado, A., Perlemuter, G., Cassard-Doulcier, A.M. and Gerard, P. 2013. Intestinal microbiota determines development of non-alcoholic fatty liver diseasein mice. Gut 62:1787-1794.   DOI
82 Kullisaar, T., Zilmer, M., Mikelsaar, M., Vihalemm, T., Annuk, H., Kairane, C. and Kilk, A. 2002. Two antioxidative lactobacilli strains as promising probiotics. Int. J. FoodMicrobiol. 72:215-224.
83 Kwon, H. K., Kim, G. C., Kim, Y., Hwang, W., Jash, A., Sahoo, A., Kim, J.E., Nam, J.H. and Im, S.H. 2013. Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response. Clin. Immunol. 146:217-227.   DOI
84 Le Marechal, C., Peton, V., Ple, C., Vroland, C., Jardin, J., Briard-Bion, V., Durant, G., Chuat, V., Loux, V., Foligne, B., Deutsch, S.M., Falentin, H. and Jan, G. 2014. Surface proteins of Propionibacterium freudenreichii are involved in its anti-inflammatory properties. J. Proteomics. 113:447-461.
85 Lebeer, S., Claes, I. J. J., Verhoeven, T. L. A., Vanderleyden, J. and De Keersmaecker, S. C. J. 2011. Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb. Biotechnol. 4:368-374.   DOI
86 Lye, H. S., Rusul, G. and Liong, M. T. 2010. Removal of cholesterol by lactobacillivia incorporation and conversion to coprostanol. J. Dairy Sci. 93:1383-1392.   DOI
87 Bao, Y., Zhang, Y., Zhang, Y., Liu, Y., Wang, S., Dong, X., Wang, Y. and Zhang, H. 2010. Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control 21:695-701.   DOI
88 Bauerl, C., Perez-Martinez, G., Yan, F., Polk, D. B. and Monedero, V. 2010. Functional analysis of the p40 and p75 proteins from Lactobacillus casei BL23. J. Mol. Microbiol. Biotechnol. 19:231-241.   DOI