• 제목/요약/키워드: Homogenization Method

검색결과 257건 처리시간 0.023초

주어진 고유주파수를 갖는 구조물의 위상최적설계 (Topology Design of a Structure with a Specified Eigenfrequency)

  • 이종환;민승재
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1210-1216
    • /
    • 2003
  • Topology optimization is applied to determine the layout of a structural component with a specified frequency by minimizing the difference between the specified structural frequency and a given frequency. The homogenization design method is employed and the topology design problem is solved by the optimality criteria method. The value of a weighting factor in the optimality criteria plays an important role in this topology design problem. The modified optimality criteria method approximated by using the binomial expansion is suggested to determine the suitable value of the weighting factor, which makes convergence stable. If a given frequency is set as an excited frequency, it is possible to avoid resonance by moving away the specified structural frequency from the given frequency. The results of several test problems are compared with previous works and show the validity of the proposed algorithm.

Acceleration method of fission source convergence based on RMC code

  • Pan, Qingquan;Wang, Kan
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1347-1354
    • /
    • 2020
  • To improve the efficiency of MC criticality calculation, an acceleration method of fission source convergence which gives an improved initial fission source is proposed. In this method, the MC global homogenization is carried out to obtain the macroscopic cross section of each material mesh, and then the nonlinear iterative solution of the SP3 equations is used to determine the fission source distribution. The calculated fission source is very close to the real fission source, which describes its space and energy distribution. This method is an automatic computation process and is tested by the C5G7 benchmark, the results show that this acceleration method is helpful to reduce the inactive cycles and overall running time.

셀 방법을 이용한 3차원 원형 브레이드 유리 섬유 강화 복합 재료의 구성 방정식 (Constitutive Equations for Three Dimensional Circular Braided Glass Fiber Reinforced Composites Using Cell Modeling Method)

  • 이원오;정관수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.71-74
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided composites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced composite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained fer two volume fractions.

  • PDF

자기장에 의한 조화가진을 받는 구조물의 위상 최적화 (Topology Optimization of a Structure under Harmonic Excitation caused by Magnetic Fields)

  • 유정훈
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1613-1620
    • /
    • 2001
  • This study is focused on the application of the homogenization design method (HDM) to reduce the vibration level of a structure excited by magnetic harmonic farces. This is accomplished by obtaining the optimal material distribution in a design domain to minimize the frequency response caused by the magnetic harmonic excitation. The Maxwell stress method is used to compute the magnetic force and the HDM is applied leer the optimization. The developed method is applied to a simple pole model that is excited by the harmonic bending farce caused by the current around an adjacent stator. Results shows that the HDM is valid to minimize the frequency response.

분말가압 성형공정의 멀티스케일 시뮬레이션과 공정변수 최적화 (Multi-scale Simulation of Powder Compaction Process and Optimization of Process Parameters)

  • 심진우;심정길;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.344-347
    • /
    • 2007
  • For modeling the non-periodic and randomly scattered powder particles, the quasi-random multi-particle array is introduced. The multi-scale process simulation, which enables to formulate a regression model with a response surface method, is performed by employing a homogenization method. The size of ${Al_2}{O_3}$ particle, amplitude of cyclic compaction pressure, and friction coefficient are considered as optimal process parameters. The optimal conditions of process parameters providing the highest relative density are finally found by using the grid search method.

  • PDF

Homogenized thermal properties of 3D composites with full uncertainty in the microstructure

  • Ma, Juan;Wriggers, Peter;Li, Liangjie
    • Structural Engineering and Mechanics
    • /
    • 제57권2호
    • /
    • pp.369-387
    • /
    • 2016
  • In this work, random homogenization analysis for the effective thermal properties of a three-dimensional composite material with unidirectional fibers is presented by combining the equivalent inclusion method with Random Factor Method (RFM). The randomness of the micro-structural morphology and constituent material properties as well as the correlation among these random parameters are completely accounted for, and stochastic effective thermal properties as thermal expansion coefficients as well as their correlation are then sought. Results from the RFM and the Monte-Carlo Method (MCM) are compared. The impact of randomness and correlation of the micro-structural parameters on the random homogenized results is revealed by two methods simultaneously, and some important conclusions are obtained.

석영광물의 용해 및 수산화 이온의 확산에 관한 균질화해석 (Homogenization Analysis of Problems related to Quartz Dissolution and Hydroxide Diffusion)

  • 최정해
    • 지질공학
    • /
    • 제20권3호
    • /
    • pp.271-279
    • /
    • 2010
  • 광물의 용해현상과 밀접하게 관련된 암석의 시간의존성 변형과 파괴현상은 실내시험에서 비교적 용이하게 관찰된다. 본 연구에서는 고준위 방사성폐기물의 지하 처분장 건설시 완충제로 사용되어지는 벤토나이트에 많이 포함된 석영의 고 알칼리 환경 하에서의 용해 현상을 정량적으로 관찰하기 위해서 수산화 이온의 확산과 석영의 용해 문제를 균질화 해석법을 이용하여 평가하였다. 해석결과에 의하면 석영의 용해량은 주변 환경의 온도 및 층간수의 두께와 비례한다. 특히 고알칼리 환경 하에서는 층간수의 두께가 작아지면서 반응표면적이 커지게 되고 그 결과 용해 속도는 층간수의 두께가 작아질수록 커지는 결과를 나타내고 있다.

A novel porosity-based homogenization scheme for propagation of waves in axially-excited FG nanobeams

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Advances in nano research
    • /
    • 제7권6호
    • /
    • pp.379-390
    • /
    • 2019
  • Putting emphasis on the effect of existence of porosity in the functionally graded materials (FGMs) on the dynamic responses of waves scattered in FG nanobeams resulted in implementation of a novel porosity-based homogenization method for FGMs and show its applicability in a wave propagation problem in the presence of axial pre-load for the first time. In the employed porosity-dependent method, the coupling between density and Young's moduli is included to consider for the effective moduli of the FG nanobeam by the means of a more reliable homogenization technique. The beam-type element will be modeled via the classical theory of beams, namely Euler-Bernoulli beam theory. Also, the dynamic form of the principle of virtual work will be extended for such nanobeams to derive the motion equations. Applying the nonlocal constitutive equations of Eringen on the obtained motion equations will be resulted in derivation of the nanobeam's governing equations. Depicted results reveal that the dispersion responses of FG nanobeams will be decreased as the porosity volume fraction is increased which must be noticed by the designers of advanced nanosize devices who are interested in employment of wave dispersion approach in continuous systems for specific goals.

보강된 적층 복합재료 주름판의 진동해석 (Vibration Analysis of Stiffened Corrugated Composite Plates)

  • 박경조;김영완
    • Composites Research
    • /
    • 제33권6호
    • /
    • pp.377-382
    • /
    • 2020
  • 본 연구에서는 Rayleigh-Ritz 법을 이용하여 열린 단면보로 보강된 복합재료 주름판의 자유진동 특성을 연구하였다. 복합재료 주름판에 대해 등가균질모델을 이용하였으며, 이 등가모델은 주름판을 두 수직방향에 대해 서로 다른 재료특성을 갖도록 직교이방성판으로 취급한다. 등가 직교이방성판의 운동은 회전 관성 및 횡전단변형을 고려하기 위해 1차 전단변형이론을 기초로 표현된다. 또한 진동형상에서 보강재의 위치에 따른 국부 형상을 표현하기 위해 이산보강이론이 적용되었다. 제안된 해석 방법에 대한 타당성을 검증하기 위해 ANSYS를 이용한 유한요소해석을 수행하였으며, 두 방법을 이용해 얻은 진동수 및 진동형상을 비교하였다.

주어진 고유주파수를 갖는 구조물의 위상최적설계 (Topology Design of a Structure with a Specified Eigenfrequency)

  • 이종환;민승재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.392-397
    • /
    • 2001
  • Topology optimization is applied to determine the layout of a structure whose eigenfrequency coincides with a specified frequency. The topology optimization problem is formulated to minimize the difference between the structural frequency and a given frequency using the homogenization method and the modified optimality criteria method. It turns out that the value of a weighting factor in the updating scheme plays an important role to achieve both a suitable speed and a stable convergence of an algorithm. Unlike a constant weighting factor in previous works, it is suggested that a weight factor is varied during the iteration to control the amount of the frequency change. To substantiate the proposed approach two-dimensional structural design problems are presented and the resulted topology layouts for the specified eigenfrequency are compared to layouts for maximizing the corresponding eigenfrequency.

  • PDF