• Title/Summary/Keyword: Hole mobility

Search Result 175, Processing Time 0.025 seconds

Extreme baking effect of interlayer on PLED's performance

  • Kim, Mu-Gyeom;Kim, Sang-Yeol;Lee, Tae-Woo;Park, Sang-Hun;Park, Jong-Jin;Pu, Lyong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1775-1778
    • /
    • 2006
  • Through baking process on an interlayer, known as hole transporting layer, varying baking temperature up to 300 degree, which is considered as extremely high for polymer light emitting device (PLED) system, we found interesting relationship between packing density and morphology affecting device performance. Granular morphology shows that as temperature increases, grain size is getting smaller to pack closely and make interlayer harden. Such denser interlayer has temperature dependency of its own mobility, even without clear evidence of degradation of material itself. Its fact proven in a single film also reflects on multilayered PLED's performance like IVL, efficiency, lifetime. It's found that, especially, to enhance lifetime is related with thermal stability of interlayer and its mobility dependency to meet better charge balance. Therefore, it gives us understanding not only baking effect of interlayer, but also material & device designing guide to enhance lifetime.

  • PDF

Measurement of Drifting Mobility and Transit Time of Holes and Electrons in Stabilized a-Se Film

  • Kim, Jae-Hyung;Park, Chang-Hee;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.362-363
    • /
    • 2007
  • The transport property of stabilized amorphous selenium typical of the material used in direct conversion x-ray imaging devices was studied using the moving photo-carrier grating (MPG) technique and time-of-flight (TOF) measurements. For MPG measurement, the electron and hole mobility, and recombination lifetime of a-Se films with arsenic (As) additions have been obtained. For TOF measurement, a laser beam with pulse duration of 5ns and wavelength of 350 nm was illuminated on the surface of a-Se with thickness of $400{\mu}m$.

  • PDF

A theory on the impossibility of the moving for hle and the primary electron as a carrier using the analyses, by quantum mechanics, of the structure of atoms and molecules (양자역학적 원자 및 분자 분석에 의한 정공의 이동 불가능성과 운반자로써의 주도 전자에 관한 이론)

  • 주정규
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.327-330
    • /
    • 1998
  • In this theory, we explained the impossibility of the motion or miving of the hole that has been recognized to be a carrier, by giving some fundamental reasons. We treated energy gap and impurity concentration, in p- and n-type region, as functions of the mobility that is one of te factors which determine current quantity, and analyzed the primary electron theory as a carrier by introducing 2 hypotheses.

  • PDF

Control of Graphene's Electrical Properties by Chemical Doping Methods

  • Lee, Seung-Hwan;Choi, Min-Sup;La, Chang-Ho;Yoo, Won-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.119-119
    • /
    • 2011
  • This study examined the synthesis of large area graphene and the change of its characteristics depending on the ratio of CH4/H2 by using the thermal CVD methods and performed the experiments to control the electron-hole conduction and Dirac-point of graphene by using chemical doping methods. Firstly, with regard to the characteristics of the large area graphene depending on the ratio of CH4/H2, hydrophobic characteristics of the graphene changed to hydrophilic characteristics as the ratio of CH4/H2 reduces. The angle of contact also increased to 78$^{\circ}$ from 58$^{\circ}$. According to the results of Raman spectroscopy showing the degree of defect, the ratio of I(D)/I(G) increases to 0.42% from 0.25% and the surface resistance also increased to 950 ${\Omega}$ from 750 ${\Omega}$/sq. As for the graphene synthesis at the high temperature of 1,000$^{\circ}$ by using CH4/H2 in a Cu-Foil, the possibility of graphene formation was determined as a function of the ratio of H2 included in the fixed quantity of CH4 as per specifications of every equipment. It was observed that the excessive amount of H2 prevented graphene from forming, as extra H-atoms and molecules activated the reaction to C-bond of graphene. Secondly, in the experiment for the electron-hole conduction and the Dirac-point of graphene using the chemical doping method, the shift of Dirac-point and the change in the electron-hole conduction were observed for both the N-type (PEI) and the P-type (Diazonium) dopings. The ID-VG results show that, for the N-type (PEI) doped graphene, Dirac-point shifted to the left (-voltage direction) by 90V at an hour and by 130 V at 2 hours respectively, compared to the pristine graphene. Carrier mobility was also reduced by 1,600 cm2/Vs (1 hour) and 1,100 cm2/Vs (2 hours), compared to the maximum hole mobility of the pristine graphene.

  • PDF

Transport parameters in a-Se:As films for digital X-ray conversion material using the moving-photocarrier-grating technique (moving-photocarrier-grating 기술을 이용한 디지털 X-선 변환물질 a-Se:As의 수송변수)

  • Park, Chang-Hee;Nam, Sang-Hee;Kim, Jae-Hyung
    • Journal of radiological science and technology
    • /
    • v.28 no.4
    • /
    • pp.267-272
    • /
    • 2005
  • The effects of As addition in amorphous selenium (a-Se) films for digital X-ray conversion material have been studied using the moving photocarrier grating (MPG) technique. This method utilizes the moving interference pattern generated by the superposition of the two frequency shifted laser beams for the illumination of the sample. This moving intensity grating induces a short circuit current, jsc in a-Se:As film. The transport parameters of the sample are extracted from the grating-velocity dependent short circuit current induced in the sample along the modulation direction. The electron and hole mobility, and recombination lifetime of a-Se films with arsenic (As) additions have been obtained. We have found an increase in hole drift mobility and recombination lifetime, especially when 0.3% As is added into a-Se film, whereas electron mobility decreases with As addition due to the defect density. The transport properties for As doped a-Se films obtained by using MPG technique have been compared with X-ray sensitivity for a-Se:As device. The fabricated a-Se(0.3% As) device film exhibited the highest X-ray sensitivity out of 5 samples.

  • PDF

Pyrrolo[3,2-b]pyrrole-Based Copolymers as Donor Materials for Organic Photovoltaics

  • Song, Suhee;Ko, Seo-Jin;Shin, Hyunmin;Jin, Youngeup;Kim, Il;Kim, Jin Young;Suh, Hongsuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3399-3404
    • /
    • 2013
  • A new accepter unit, pyrrolo[3,2-b]pyrrole-2,5-dione, was prepared and utilized for the synthesis of the conjugated polymers containing electron donor-acceptor pair for OPVs. Pyrrolo[3,2-b]pyrrole-2,5-dione unit, regioisomer of the known pyrrolo[3,4-c]pyrrole-1,4-dione, is originated from the structure of stable synthetic pigment. The new conjugated polymers with 1,4-diphenylpyrrolo[3,2-b]pyrrole-2,5-dione, thiophene and carbazole were synthesized using Suzuki polymerization to generate P1 and P2. The solid films of P1 and P2 show absorption bands with maximum peaks at about 377, 554 and 374, 542 nm and the absorption onsets at 670 and 674 nm, corresponding to band gaps of 1.85 and 1.84 eV, respectively. To improve the hole mobility of the polymer with 1,4-bis(4-butylphenyl)-pyrrolo[3,2-b]-pyrrole-2,5-dione unit, which was previously reported by us, the butyl group at the 4-positions of the N-substituted phenyl group was substituted with hydrogen and methyl group. The field-effect hole mobility of P2 is $9.6{\times}10^{-5}cm^2/Vs$. The device with $P2:PC_{71}BM$ (1:2) showed $V_{OC}$ value of 0.84 V, $J_{SC}$ value of 5.10 $mA/cm^2$, and FF of 0.33, giving PCE of 1.42%.

Highly efficient organic electroluminescent diodes realized by efficient charge balance with optimized Electron and Hole transport layers

  • Khan, M.A.;Xu, Wei;Wei, Fuxiang;Bai, Yu;Jiang, X.Y.;Zhang, Z.L.;Zhu, W.Q.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1103-1107
    • /
    • 2007
  • Highly efficient organic electroluminescent devices (OLEDs) based on 4,7- diphenyl-1, 10- phenanthroline (BPhen) as the electron transport layer (ETL), tris (8-hydroxyquinoline) aluminum ($Alq_3$) as the emission layer (EML) and N,$\acute{N}$-bis-[1-naphthy(-N,$\acute{N}$diphenyl-1,1´-biphenyl-4,4´-diamine)] (NPB) as the hole transport layer (HTL) were developed. The typical device structure was glass substrate/ ITO/ NPB/$Alq_3$/ BPhen/ LiF/ Al. Since BPhen possesses a considerable high electron mobility of $5\;{\times}\;10^{-4}\;cm^2\;V^{-1}\;s^{-1}$, devices with BPhen as ETL can realize an extremely high luminous efficiency. By optimizing the thickness of both HTL and ETL, we obtained a highly efficient OLED with a current efficiency of 6.80 cd/A and luminance of $1361\;cd/m^2$ at a current density of $20\;mA/cm^2$. This dramatic improvement in the current efficiency has been explained on the principle of charge balance.

  • PDF

A Trapping Behavior of GaN on Diamond HEMTs for Next Generation 5G Base Station and SSPA Radar Application

  • Lee, Won Sang;Kim, John;Lee, Kyung-Won;Jin, Hyung-Suk;Kim, Sang-Keun;Kang, Youn-Duk;Na, Hyung-Gi
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.30-36
    • /
    • 2020
  • We demonstrated a successful fabrication of 4" Gallium Nitride (GaN)/Diamond High Electron Mobility Transistors (HEMTs) incorporated with Inner Slot Via Hole process. We made in manufacturing technology of 4" GaN/Diamond HEMT wafers in a compound semiconductor foundry since reported [1]. Wafer thickness uniformity and wafer flatness of starting GaN/Diamond wafers have improved greatly, which contributed to improved processing yield. By optimizing Laser drilling techniques, we successfully demonstrated a through-substrate-via process, which is last hurdle in GaN/Diamond manufacturing technology. To fully exploit Diamond's superior thermal property for GaN HEMT devices, we include Aluminum Nitride (AlN) barrier in epitaxial layer structure, in addition to conventional Aluminum Gallium Nitride (AlGaN) barrier layer. The current collapse revealed very stable up to Vds = 90 V. The trapping behaviors were measured Emission Microscope (EMMI). The traps are located in interface between Silicon Nitride (SiN) passivation layer and GaN cap layer.

Photoluminescence property of Al,N-codoped p-type ZnO films by dc magnetron sputtering

  • Jin, Hu-Jie;Liu, Yan-Yan;Park, Bok-Kee;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.419-420
    • /
    • 2008
  • In this study, high quality (Al,N)-codoped p-type ZnO thin films were obtained by DC magnetron sputtering. The film on buffer layer grown in 80% $N_2$ ambient shows highest hole concentration of $2.93\times10^{17}cm^{-3}$. The films show hole concentration in the range of $1.5\times10^{15}$ to $2.93\times10^{17}cm^{-3}$, resistivity of 131.2 to 2.864 $\Omega$cm, mobility of 3.99 to 31.6 $cm^2V^{-1}s^{-1}$. The films on Si show easier p-doping in ZnO than those on buffer layer. The film on Si shows the highest quality of optical photoluminescence (PL) characteristics. The donor energy level $(E_d)$ of (Al,N)-codoped ZnO films is about 50 meV and acceptor energy level $(E_a)$ is in the range of 63 to 71 meV. It will help to improve p-type ZnO films.

  • PDF

A Multifunctional Material Based on Triphenylamine and a Naphthyl Unit for Organic Light-Emitting Diodes, Organic Solar Cells, and Organic Thin-Film Transistors

  • Kwon, Jongchul;Kim, Myoung Ki;Hong, Jung-Pyo;Lee, Woochul;Lee, Seonghoon;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1355-1360
    • /
    • 2013
  • We have developed a new multifunctional material, 4,4',4"-tris(4-naphthalen-2-yl-phenyl)amine (2-TNPA), which can be used as a blue-emitting and hole-transporting material in organic light-emitting diodes (OLEDs), as well as a donor material in organic solar cells (OSCs) and an active material in organic thin-film transistors (OTFTs). The OLED device doped with 3% 2-TNPA shows a maximum current efficiency of 3.0 $cdA^{-1}$ and an external quantum efficiency of 3.0%. 2-TNPA is a more efficient hole-transporting material than 4,4'-bis[N-(naphthyl-N-phenylamino)]biphenyl (NPD). Furthermore, 2-TNPA shows a power-conversion efficiency of 0.39% in OSC and a field-effect mobility of $3.2{\times}10^{-4}cm^2V^{-1}s^{-1}$ in OTFTs.