• 제목/요약/키워드: HoMnO3

검색결과 107건 처리시간 0.018초

소결온도에 따른 (Na0.465K0.465Bi0.07)(Nb0.93Ti0.07)O3-0.08MnO2 세라믹스의 구조적, 전기적 특성 (Structural and Electrical Properties of (Na0.465K0.465Bi0.07)(Nb0.93Ti0.07)O3-0.08MnO2 Ceramics with Variation of Sintering Temperature)

  • 이태호;여진호;이성갑
    • 한국전기전자재료학회논문지
    • /
    • 제25권7호
    • /
    • pp.506-510
    • /
    • 2012
  • In this study, lead-free $(Na_{0.465}K_{0.465}Bi_{0.07})(Nb_{0.93}Ti_{0.07})O_3-0.08MnO_2$ ceramics were fabricated by conventional mixed oxide method. Structural and electrical properties of lead-free $(Na_{0.465}K_{0.465}Bi_{0.07})(Nb_{0.93}Ti_{0.07})O_3-0.08MnO_2$ ceramics with the variation of sintering temperature were investigated. As results of x-ray diffraction analysis, all specimens showed a typical polycrystalline perovskite structure without presence of the second phase. Sintered density increased with an increases of sintering temperature and the specimen sintered at $1,020^{\circ}C$ showed the maximum value of 4.5 $g/cm^3$. The average grain size of the $(Na_{0.465}K_{0.465}Bi_{0.07})(Nb_{0.93}Ti_{0.07})O_3-0.08MnO_2$ specimen sintered at $1,020^{\circ}C$ is about 0.83 ${\mu}m$. Electromechanical coupling factor, relative dielectric constant and dielectric loss of $(Na_{0.465}K_{0.465}Bi_{0.07})(Nb_{0.93}Ti_{0.07})O_3-0.08MnO_2$ specimens sintered at $1,020^{\circ}C$ were 0.252, 741 and 0.043% respectively.

Mn3O4를 첨가한 Al2O3 세라믹스의 소결 및 광학 특성 (Sintering and the Optical Properties of Mn3O4-added Al2O3)

  • 김진호;백승우
    • 한국전기전자재료학회논문지
    • /
    • 제29권9호
    • /
    • pp.539-545
    • /
    • 2016
  • Alumina added with Mn3O4 up to 7.5 cat% of Mn was prepared by conventional ceramic processing, and the sintering behavior and the optical properties of which were studied as functions of Mn content. Densification and grain growth of alumina were enhanced by Mn addition up to 0.75 cat% but was leveled off at higher concentrations. XRD revealed that $Al_2MnO_4$(galaxite) was formed as a second phase in the specimens with more than 0.75 cat% of Mn. Thus it is believed that either the solid solution effect of Mn or the Zener effect of $Al_2MnO_4$ becomes predominant in the sintering of Mn-added $Al_2O_3$ according to the additive concentration. UV-VIS reflectivity(SCI) spectra of Mn-added $Al_2O_3$ consisted of smooth bottoms in 300~550 nm wavelength range and plateaus at wavelengths longer than 650 nm. The reflectivity spectrum continuously moved downward, and the specimen color became darker and thicker with increasing Mn content. The CIELAB color change with respect to standard white was also dependent on the amount of Mn added: ${\Delta}L^*$(D65) negatively increased and ${\Delta}E_{ab}^*$(D65) positively increased with increasing Mn content, probably due to Mn substitution to Al and/or the mixing effect of black $Al_2MnO_4$ as a second phase.

Sb/Bi비에 따른 5원계 바리스터의 소결거동 및 전기적 특성(I) : ZnO-Bi2O3-Sb2O3-Mn3O4-Cr2O3 (Sintering and Electrical Properties According to Sb/Bi Ratio(I) : ZnO-Bi2O3-Sb2O3-Mn3O4-Cr2O3 Varistor)

  • 홍연우;이영진;김세기;김진호
    • 한국재료학회지
    • /
    • 제22권12호
    • /
    • pp.675-681
    • /
    • 2012
  • We aimed to examine the co-doping effects of 1/6 mol% $Mn_3O_4$ and 1/4 mol% $Cr_2O_3$ (Mn:Cr = 1:1) on the reaction, microstructure, and electrical properties, such as the bulk defects and grain boundary properties, of ZnO-$Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi = 0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Cr-doped ZBS, ZBS(MnCr) varistors were controlled using the Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$), ${\alpha}$-spinel ($Zn_7Sb_2O_{12}$), and ${\delta}-Bi_2O_3$ (also ${\beta}-Bi_2O_3$ at Sb/Bi ${\leq}$ 1.0) were detected for all of the systems. Mn and Cr are involved in the development of each phase. Pyrochlore was decomposed and promoted densification at lower temperature on heating in Sb/Bi = 1.0 system by Mn rather than Cr doping. A more homogeneous microstructure was obtained in all systems affected by ${\alpha}$-spinel. In ZBS(MnCr), the varistor characteristics were improved dramatically (non-linear coefficient, ${\alpha}$ = 40~78), and seemed to form ${V_o}^{\cdot}$(0.33 eV) as a dominant defect. From impedance and modulus spectroscopy, the grain boundaries can be seen to have divided into two types, i.e. one is tentatively assigned to ZnO/$Bi_2O_3$ (Mn,Cr)/ZnO (0.64~1.1 eV) and the other is assigned to the ZnO/ZnO (1.0~1.3 eV) homojunction.

HoMnO3 박막의 강유전 특성의 결정상 의존성 (Dependence of Ferroelectric Properties on the Crystalline Phases of HoMnO3 Thin Film)

  • 김응수;강동호
    • 한국재료학회지
    • /
    • 제16권6호
    • /
    • pp.394-399
    • /
    • 2006
  • Ferroelectric $HoMnO_3$ thin films were deposited on the Si(100) substrate at $700^{\circ}C$ for 2 hrs by metalorganic chemical vapor deposition (MOCVD) and post-annealed at 850oC by rapid thermal process (RTP). Electrical properties and crystalline phases of $HoMnO_3$ thin films were investigated as a function of postannealing time. Single phase of hexagonal symmetry with c-axis preferred orientation was obtained from $HoMnO_3$ thin films post-annealed at $850^{\circ}C$ for 5 min, while the c-axis preferred orientation was decreased with the increase of post-annealing time, and the thin films post-annealed at $850^{\circ}C$ for 15 min showed the mixture phases of hexagonal and orthorhombic symmetry. P-E (Polarization-Electric field) hysteresis loop of ferroelectric $HoMnO_3$ thin films was observed only for the single phase of hexagonal symmetry, but that was not observed for the mixture phases of the hexagonal and orthorhombic symmetry, which was discussed with the bond valence of Mn ion of crystalline phase. Leakage current density was dependent on the microstructure of thin films as well as the change of valence of Mn ion.

Oxidation of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-0.45%C Alloys at 550-650 ℃

  • Park, Soon Yong;Xiao, Xiao;Kim, Min Ji;Lee, Geun Taek;Hwang, Dae Ho;Woo, Young Ho;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • 제21권1호
    • /
    • pp.53-61
    • /
    • 2022
  • Alloys of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-(0.4-0.5)%C were oxidized at 550 ℃ to 650 ℃ for 20 h to understand effects of alloying elements on oxidation. Their oxidation resistance increased with increasing Mn level to a small extent. Their oxidation kinetics changed from parabolic to linear when Mn content was decreased and temperature was increasing. Oxide scales primarily consisted of Fe2O3, Mn2O3, and MnFe2O4 without any protective Al-bearing oxides. During oxidation, Fe, Mn, and a lesser amount of Al diffused outward, while oxygen diffused inward to form internal oxides. Both oxide scales and internal oxides consisted of Fe, Mn, and a small amount of Al. The oxidation of Mn and carbon transformed γ-matrix to α-matrix in the subscale. The oxidation led to the formation of relatively thick oxide scales due to inherently inferior oxidation resistance of alloys and the formation of voids and cracks due to evaporation of manganese, decarburization, and outward diffusion of cations across oxides.

RF 스퍼터법을 사용한 La0.6Sr0.4MnO3 박막 제조 및 미세구조와 전기전도 특성 (Preparation of La0.6Sr0.4MnO3 Thin Films by RF Magnetron Sputtering and Their Microstructure and Electrical Conduction Properties)

  • 박창순;선호정
    • 한국전기전자재료학회논문지
    • /
    • 제23권4호
    • /
    • pp.303-310
    • /
    • 2010
  • We fabricated $La_{0.6}Sr_{0.4}MnO_3$ thin films using radio frequency (RF) magnetron sputtering. They were grown on sapphire substrates with various deposition conditions. After the growth of the $La_{0.6}Sr_{0.4}MnO_3$ thin films, they were annealed at various temperatures to be crystallized. We successfully fabricated single phase $La_{0.6}Sr_{0.4}MnO_3$ thin films with high electrical conductivity. The room temperature resistivity was $1.5{\times}10^{-2}{\Omega}{\cdot}cm$. It can be considered that $La_{0.6}Sr_{0.4}MnO_3$ thin films are one of the feasible candidates for electrodes for integrated device applications.

n=3인 Ruddlesden-Popper형 La2.1Sr1.9Mn3O10 세라믹스의 Small polaron Hopping 전도 (II) (Small Polaron Hopping Conduction of n=3 Ruddlesden-Popper Compound La2.1Sr1.9Mn3O10 System (II))

  • 정우환;이준형;손정호
    • 한국세라믹학회지
    • /
    • 제39권9호
    • /
    • pp.878-883
    • /
    • 2002
  • Mn계 층상 perovskite 세라믹스 $La_{2.1}Sr_{1.9}Mn_3O_{10}$의 전기저항 및 열기전력의 온도의존성을 측정하였다. 실험결과 $La_{2.1}Sr_{1.9}Mn_3O_{10}$의 전기전도는 Emin-Holstein의 단열 small polaron model에 의하여 이루어지고 있었다. Curie 온도이상의 small polaron hopping 영역에서의 열기전력 측정결과는 이론적인 $Mn^{4+}$ 가전자 관점에서 예측되었던 열기전력 측정 결과와 거의 동일하였다. 이 실험결과 역시 $La_{2.1}Sr_{1.9}Mn_3O_{10}$ 세라믹스의 전기전도가 small polaron에 의하여 이루어지고 있음을 의미한다.

SiO2/Si 및 Si 기판에 rf magnetron sputtering법으로 증착된 적외선 센서용 La0.7Sr0.3MnO3 CMR 박막 저항체 특성연구 (La0.7Sr0.3MnO3 CMR thin film resistor deposited on SiO2/Si and Si substrates by rf magnetron sputtering for infrared sensor)

  • 최선규;;유병곤;류호준;박형호
    • 한국진공학회지
    • /
    • 제17권2호
    • /
    • pp.130-137
    • /
    • 2008
  • $La_{0.7}Sr_{0.3}MnO_3$ 박막을 rf 마그네트론 스퍼터를 이용하여 챔버 내 산소가스유량비를 0, 40, 80 sccm 으로 조절하고 후열처리 공정 없이 기판온도를 $350^{\circ}C$로 유지하면서 $SiO_2$/Si(100) 및 Si(100) 기판에 증착하였다. 증착된 $La_{0.7}Sr_{0.3}MnO_3$ 박막은 $SiO_2$/Si(100), Si(100) 기판 모두 (100), (110), (200)면을 갖는 polycrystalline 상태였으며, oxygen flow rate이 증가함에 따라 박막의 grain size가 증가하였다. 증가되는 grain size로 인하여 grain boundary가 감소하였고 따라서 높은 oxygen flow rate에서 증착된 박막은 면저항이 감소하는 현상을 나타내었다. $SiO_2$/Si 기판과 Si 기판에 증착된 LSMO 박막의 TCR 값은 약 -2.0 $\sim$ -2.2%를 나타내었다.

ZnO-Bi2O3-Mn3O4-Co3O4 바리스터의 결함과 전기적 특성 (Defects and Electrical Properties of ZnO-Bi2O3-Mn3O4-Co3O4 Varistor)

  • 홍연우;이영진;김세기;김진호
    • 한국전기전자재료학회논문지
    • /
    • 제25권12호
    • /
    • pp.961-968
    • /
    • 2012
  • In this study, we have investigated the effects of Mn and Co co-doping on defects, J-E curves and grain boundary characteristics of ZnO-$Bi_2O_3$ (ZB) varistor. Admittance spectra and dielectric functions show two bulk defects of $Zn_i^{{\cdot}{\cdot}}$ (0.17~0.18 eV) and $V_o^{\cdot}$ (0.30~0.33 eV). From J-E characteristics the nonlinear coefficient (${\alpha}$) and resistivity (${\rho}_{gb}$) of pre-breakdown region decreased as 30 to 24 and 5.1 to 0.08 $G{\Omega}cm$ with sintering temperature, respectively. The double Schottky barrier of grain boundaries in ZB(MCo) ($ZnO-Bi_2O_3-Mn_3O_4-Co_3O_4$) could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.64 eV at lower temperature to 1.06 eV at higher temperature. It was revealed that a co-doping of Mn and Co in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against an ambient temperature (${\alpha}$-factor= 0.136).