• 제목/요약/키워드: Histone

검색결과 547건 처리시간 0.032초

히스톤 라이신 메틸화 (Histone Lysine Methylation)

  • 곽상준
    • 생명과학회지
    • /
    • 제17권3호통권83호
    • /
    • pp.444-453
    • /
    • 2007
  • 유핵세포의 게놈(genome)은 단백-DNA복합체인 염색질(chromatin)의 형태로 존재하는데, 생명현상을 유지하기 위해서는 생명체 또는 세포가 처한 상황에 맞게 염색질의 구조를 변화시키는 역동적인 조절기전이 필요하다. 염색질을 구성하는 기본단위는 히스톤 8량체 (histone octamer)를 포함하는 뉴클레오좀(nucleosome)이다. 히스톤 단백에는 여러 종류의 공유결합성 수식이 일어나는데, 그 중 하나가 라이신 잔기(lysine residue)에 일어나는 메틸화이다. 최근 수년간의 연구로 여러 개의 히스톤 라이신 메틸화효소(histone lysine methyltransferase, HKMT), 이에 결합하는 염색질단백 및 메틸화와 관련된 후생유전학적 현상이 밝혀졌으며, 특히 정밀한 연구방법을 동원한 다방면의 실험을 통하여 비록 자세한 기전과 전체적인 윤곽의 규명은 미흡하더라도 라이신 메틸화가 후생유전학적 변화를 초래하는 일부 과정이 규명 되었다. 또한 여러 종류의 라이신 탈메틸화효소가 최근에 발견됨에 따라, 아세틸화, 인산화등 다른 공유결합성 수식보다는 상대 적으로 안정되더라도, 히스톤 메 틸화로 유발되는 후생유전학적 변화가 불가역성이 아님을 알게 되었다.

A Novel Histone Methyltransferase, Kodo7 Induces Histone H3-K9 Methylation and Mediates Apoptotic Cell Death

  • Kim, Sung-Mi;Seo, Sang-Beom
    • International Journal of Oral Biology
    • /
    • 제31권3호
    • /
    • pp.81-86
    • /
    • 2006
  • SET (Suppressor of variegation, Enhancer of zeste, and the Trithorax) domain-containing proteins are known to have methyltransferase activity at lysine residues of histone proteins. In this study, we identified a novel SET domain-containing protein from mouse and named Kodo7. Indeed, Kodo7 has methyltransferase activity at K9 residue of the H3 protein as demonstrated by a histone methyl-transferse activity assay using GST-tagged Kodo7. Confocal microscopy showed that Kodo7 is co-localized with histones in the nucleus. Interestingly, ectopic expression of Kodo7 by transient transfection induced cell death and treatment of the transfectants with a caspase-3 inhibitor, Ac-DEVD-AFC decreased Kodo7-induced apoptosis. These results suggest that Kodo7 induces apoptotic cell death through increased methylation of histones leading to transcriptional repression.

Zinc and Its Transporters in Epigenetics

  • Brito, Sofia;Lee, Mi-Gi;Bin, Bum-Ho;Lee, Jong-Soo
    • Molecules and Cells
    • /
    • 제43권4호
    • /
    • pp.323-330
    • /
    • 2020
  • Epigenetic events like DNA methylation and histone modification can alter heritable phenotypes. Zinc is required for the activity of various epigenetic enzymes, such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), histone deacetylases (HDACs), and histone demethylases, which possess several zinc binding sites. Thus, the dysregulation of zinc homeostasis can lead to epigenetic alterations. Zinc homeostasis is regulated by Zinc Transporters (ZnTs), Zrt- and Irt-like proteins (ZIPs), and the zinc storage protein metallothionein (MT). Recent advances revealed that ZIPs modulate epigenetics. ZIP10 deficiency was found to result in reduced HATs, confirming its involvement in histone acetylation for rigid skin barrier formation. ZIP13 deficiency, which is associated with Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS), increases DNMT activity, leading to dysgenesis of dermis via improper gene expressions. However, the precise molecular mechanisms remain to be elucidated. Future molecular studies investigating the involvement of zinc and its transporters in epigenetics are warranted.

히스톤 메틸화와 유전자 전사 (Histone methylation and transcription)

  • 김애리
    • 생명과학회지
    • /
    • 제17권4호
    • /
    • pp.593-598
    • /
    • 2007
  • Amino acids of histone tail are covalently modified in eukaryotic cells. Lysine residues in histone H3 and H4 are methylated at three levels; mono-, di- or trimethylation. Methylation in histones is related with transcription of the genes in distinct pattern depending on lysine residues and methylated levels. Relation between transcription and methylation has been relatively well understood at three lysines H3K4, H3K9 and H3K36. H3K4 is methylated in active or potentially active chromatin and its methylation associates with active transcription. H3K9 is generally methylated in heterochromatin or repressed gene, but trimethylation of this lysine occur in actively transcribed genes also. Methylation at H3K36 generally correlates with active chromatin/transcription, but the correlation of its dimethylation with transcription is controversial. All together methylation patterns of individual lysine residues in histone relate with activation or repression of transcription and may provide distinctive roles in transcriptional regulation of the eukaryotic genes.

Histone Deacetylase in Carcinogenesis and Its Inhibitors as Anti-cancer Agents

  • Kim, Dong-Hoon;Kim, Min-Jung;Kwon, Ho-Jeong
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.110-119
    • /
    • 2003
  • The acetylation state of histone is reversibly regulated by histone acetyltransferase (HAT) and deacetylase (HDAC). An imbalance of this reaction leads to an aberrant behavior of the cells in morphology, cell cycle, differentiation, and carcinogenesis. Recently, these key enzymes in the gene expression were cloned. They revealed a broad use of this modification, not only in histone, but also other proteins that involved transcription, nuclear transport, and cytoskeleton. These results suggest that HAT/HDAC takes charge of multiple-functions in the cell, not just the gene expression. HDAC is especially known to play an important role in carcinogenesis. The enzyme has been considered a target molecule for cancer therapy. The inhibition of HDAC activity by a specific inhibitor induces growth arrest, differentiation, and apoptosis of transformed or several cancer cells. Some of these inhibitors are in a clinical trial at phase I or phase II. The discovery and development of specific HDAC inhibitors are helpful for cancer therapy, and decipher the molecular mode of action for HDAC.

Radiation-Induced CXCL12 Upregulation via Histone Modification at the Promoter in the Tumor Microenvironment of Hepatocellular Carcinoma

  • Ahn, Hak Jun;Hwang, Soon Young;Nguyen, Ngoc Hoan;Lee, Ik Jae;Lee, Eun Jeong;Seong, Jinsil;Lee, Jong-Soo
    • Molecules and Cells
    • /
    • 제42권7호
    • /
    • pp.530-545
    • /
    • 2019
  • Tumor cells can vary epigenetically during ionizing irradiation (IR) treatment. These epigenetic variegations can influence IR response and shape tumor aggressiveness. However, epigenetic disturbance of histones after IR, implicating in IR responsiveness, has been elusive. Here, we investigate whether altered histone modification after IR can influence radiation responsiveness. The oncogenic CXCL12 mRNA and protein were more highly expressed in residual cancer cells from a hepatoma heterotopic murine tumor microenvironment and coculture of human hepatoma Huh7 and normal IMR90 cells after radiation. H3K4 methylation was also enriched and H3K9 methylation was decreased at its promoter region. Accordingly, invasiveness and the subpopulation of aggressive $CD133^+/CD24^-$ cells increased after IR. Histone demethylase inhibitor IOX1 attenuated CXCL12 expression and the malignant subpopulation, suggesting that responses to IR can be partially mediated via histone modifications. Taken together, radiation-induced histone alterations at the CXCL12 promoter in hepatoma cells are linked to CXCL12 upregulation and increased aggressiveness in the tumor microenvironment.

Characterization of histone gene expression in sevenband grouper, Hyporthodus septemfasciatus against nervous necrosis virus infection

  • Lee, Dong-Ryun;Lee, A-Reum;Krishnan, Rahul;Jang, Yo-Seb;Oh, Myung-Joo;Kim, Jong-Oh
    • 한국어병학회지
    • /
    • 제35권1호
    • /
    • pp.121-128
    • /
    • 2022
  • Recent studies revealed that histone proteins are involved in innate immune responses during pathogen invasion as well as DNA packing. This study characterized the histone genes (H2A.V) of sevenband groupers and analyzed gene expression in NNV-infected sevenband groupers. The open reading frame (ORF) of H2A.V is 387 bp which encoded 128 amino acid residues. The deduced amino acid sequence of H2A.V harbor a highly conserved domain for H2A/H2B/H3 and H2A_C binding domain. Quantitative real-time PCR analysis showed that H2A.V had a high gene expression level in the brain and blood after being NNV-infected. An increase in extracellular histone protein in the blood has been identified as a biomarker for vascular function in humans. More research is required to understand histone's immune response at the protein level or in aquatic animals.

Epigenetic Regulation of Fungal Development and Pathogenesis in the Rice Blast Fungus

  • Jeon, Junhyun
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 추계학술대회 및 정기총회
    • /
    • pp.11-11
    • /
    • 2014
  • Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. M. oryzae is a causal agent of rice blast disease, which destroys 10 to 30% of the rice crop annually. Since the rice is the staple food for more than half of human population, the disease is a major threat to global food security. In addition to the socioeconomic impact of the disease it causes, the fungus is genetically tractable and can undergo well-defined morphological transitions including asexual spore production and appressorium (a specialized infection structure) formation in vitro, making it a model to study fungal development and pathogenicity. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Histone modifying enzymes were identified applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 22,169 histone-modifying enzymes identified from 342 species including 214 fungal, 33 plants, and 77 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. Based on the database entries, functional analysis of genes encoding histone acetyltransferases and histone demethylases is under way. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes will be followed by ChIP-Seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.

  • PDF

Positive Charge of Arginine Residues on Histone H4 Tail Is Required for Maintenance of Mating Type in Saccharomyces cerevisiae

  • Yeom, Soojin;Oh, Junsoo;Lee, Eun-Jin;Lee, Jung-Shin
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권9호
    • /
    • pp.1573-1579
    • /
    • 2018
  • Transcriptional gene silencing is regulated by the chromatin structure, which is by various factors including histones. Saccharomyces cerevisiae contains transcriptionally silenced regions such as telomeric regions and hidden mating (HM) loci. The positively-charged amino acids on the histone H4 tail were reported to be critical for the telomeric silencing in yeast, by interacting with Dot1, a specific methyltransferase for the $79^{th}$ lysine on histone H3. However, Dot1 did not affect gene silencing within HM loci, but whether the positively-charged amino acids on the H4 tail affect HM silencing has not been defined. To elucidate the function of the H4 tail on HM silencing, we created several MATa-type yeast strains bearing the substitution of arginine with alanine or lysine on the histone H4 tail and checked the sensitivity of MATa-type yeast to alpha pheromone. The arginine point mutants substituted by alanine (R17A, R19A, and R23A) did not show sensitivity to alpha pheromone, but only two arginine mutants substituted by lysine (R17K and R19K) restored the sensitivity to alpha pheromone-like wild type. These data suggested that the basic property of arginine at $17^{th}$ and $19^{th}$ positions in the histone H4 tail is critical for maintaining HM silencing, but that of the $23^{rd}$ arginine is not. Our data implicated that the positive charge of two arginine residues on the histone H4 tail is required for HM silencing in a manner independent of Dot1.

Histone Deacetylase Inhibitors Induce the Differentiation of Eosinophilic Leukemia EoL-1 Cells into Eosinophils

  • Ishihara Kenji;Hong Jang-Ja;Kaneko Motoko;Takahashi Aki;Sugeno Hiroki;Kang Young-Sook;Ohuchi Kazuo
    • Biomolecules & Therapeutics
    • /
    • 제14권2호
    • /
    • pp.67-74
    • /
    • 2006
  • EoL-1 cells differentiate into eosinophils in the presence of n-butyrate, but the mechanism has remained to be elucidated. Because n-butyrate can inhibit histone deacetylases, we hypothesized that the inhibition of histone deacetylases induces the differentiation of EoL-1 cells into eosinophils. In this study, using n-butyrate and two other histone deacetylase inhibitors, apicidin and trichostatin A, we have analyzed the relationship between the inhibition of histone deacetylases and the differentiation into eosinophils in EoL-1 cells. It was demonstrated that apicidin and n-butyrate induced a continuous acetylation of histones H4 and H3, inhibited the proliferation of EoL-1 cells, and induced the expression of markers for mature eosinophils such as integrin ${\beta}7$, CCR1, and CCR3 on EoL-1 cells, while trichostatin A evoked a transient acetylation of his tones and induced no differentiation into eosinophils. These findings suggest that the continuous inhibition of histone deacetylases in EoL-1 cells induces the differentiation into mature eosinophils.