• Title/Summary/Keyword: Higher-order statistics

Search Result 45, Processing Time 0.087 seconds

Underwater Transient Signal Detection Using Higher-order Statistics and Wavelet Analysis (고차통계 기법과 웨이브렛을 이용한 수중 천이신호 탐지)

  • 조환래;오선택;오택환;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.670-679
    • /
    • 2003
  • This paper deals with application of wavelet transform, which is known to be good for time-frequency analysis, in order to detect the underwater transient signals embedded in ambient noise. A new detector of acoustic transient signals is presented. It combines two detection tools: wavelet analysis and higher-order statistics. Using both techniques, the detection of the transient signal is possible in low signal to noise ratio condition. The proposed algorithm uses the wavelet transform of a partition of the signal on frequency domain, and then higher-order statistics tests the Gaussian nature of the segments.

3D Model Reconstruction Algorithm Using a Focus Measure Based on Higher Order Statistics (고차 통계 초점 척도를 이용한 3D 모델 복원 알고리즘)

  • Lee, Joo-Hyun;Yoon, Hyeon-Ju;Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • This paper presents a SFF(shape from focus) algorithm using a new focus measure based on higher order statistics for the exact depth estimation. Since conventional SFF-based 3D depth reconstruction algorithms used SML(sum of modified Laplacian) as the focus measure, their performance is strongly depended on the image characteristics. These are efficient only for the rich texture and well focused images. Therefore, this paper adopts a new focus measure using HOS(higher order statistics), in order to extract the focus value for relatively poor texture and focused images. The initial best focus area map is generated by the measure. Thereafter, the area refinement, thinning, and corner detection methods are successively applied for the extraction of the locally best focus points. Finally, a 3D model from the carefully selected points is reconstructed by Delaunay triangulation.

Blind identification of nonminimum phase FIR systems from second-order statistics and absolute mean (2차 통계값과 절대평균을 이용한 비최소 위상 FIR 시스템의 미상 식별)

  • 박양수;박강민;송익호;김형명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.357-364
    • /
    • 1996
  • This paper presents a new blind identification method of nonminimum phase FIR systems without employing higher-order statistics. It is based on the observation that the absolute mean of a second-order white sequence can measure the higher-order whiteness of the sequence. The proposed method may be a new alternative way to the higher-order statistics approaches. Some computer simulations show that the absolute mean is exactly estimated and the proposed method can overcome the disadvantages of the higher-order statistics approaches.

  • PDF

Blind Image Separation with Neural Learning Based on Information Theory and Higher-order Statistics (신경회로망 ICA를 이용한 혼합영상신호의 분리)

  • Cho, Hyun-Cheol;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1454-1463
    • /
    • 2008
  • Blind source separation by independent component analysis (ICA) has applied in signal processing, telecommunication, and image processing to recover unknown original source signals from mutually independent observation signals. Neural networks are learned to estimate the original signals by unsupervised learning algorithm. Because the outputs of the neural networks which yield original source signals are mutually independent, then mutual information is zero. This is equivalent to minimizing the Kullback-Leibler convergence between probability density function and the corresponding factorial distribution of the output in neural networks. In this paper, we present a learning algorithm using information theory and higher order statistics to solve problem of blind source separation. For computer simulation two deterministic signals and a Gaussian noise are used as original source signals. We also test the proposed algorithm by applying it to several discrete images.

Speaker Identification Using Higher-Order Statistics In Noisy Environment (고차 통계를 이용한 잡음 환경에서의 화자식별)

  • Shin, Tae-Young;Kim, Gi-Sung;Kwon, Young-Uk;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.25-35
    • /
    • 1997
  • Most of speech analysis methods developed up to date are based on second order statistics, and one of the biggest drawback of these methods is that they show dramatical performance degradation in noisy environments. On the contrary, the methods using higher order statistics(HOS), which has the property of suppressing Gaussian noise, enable robust feature extraction in noisy environments. In this paper we propose a text-independent speaker identification system using higher order statistics and compare its performance with that using the conventional second-order-statistics-based method in both white and colored noise environments. The proposed speaker identification system is based on the vector quantization approach, and employs HOS-based voiced/unvoiced detector in order to extract feature parameters for voiced speech only, which has non-Gaussian distribution and is known to contain most of speaker-specific characteristics. Experimental results using 50 speaker's database show that higher-order-statistics-based method gives a better identificaiton performance than the conventional second-order-statistics-based method in noisy environments.

  • PDF

Acoustic Echo Cancellation using Time-Frequency Masking and Higher-order Statistics (시간-주파수 마스킹과 고차 신호 통계를 이용한 음향 반향신호 제거)

  • Kim, Kyoung-Jae;Nam, Sang-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.629-631
    • /
    • 2007
  • In hands-free full-duplex communication systems, acoustic signals picked up by the microphones can be mixed with echo signals as well as noises, which may result in poor performance of the corresponding communication system. Also, the system performance may decrease further if the reverberation occurs since it is harder to estimate the impulse response of the demixing system. For blind source separation (BSS) in such cases, a time-frequency masking approach can be employed to separate undesired echo signals and noises, but, permutation ambiguities also should be solved for the echo cancellation. In this paper, we propose a new acoustic echo cancellation (AEC) approach utilizing the time-frequency masking and higher-order statistics, whereby a desired signal selection, based on coherence and third-order statistics (i.e., kurtosis), is introduced along with output signal normalization. Simulation results demonstrate that the proposed approach yields better echo and noise cancellation performances than the conventional AEC approaches.

Power Quality Early Warning Based on Anomaly Detection

  • Gu, Wei;Bai, Jingjing;Yuan, Xiaodong;Zhang, Shuai;Wang, Yuankai
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1171-1181
    • /
    • 2014
  • Different power quality (PQ) disturbance sources can have major impacts on the power supply grid. This study proposes, for the first time, an early warning approach to identifying PQ problems and providing early warning prompts based on the monitored data of PQ disturbance sources. To establish a steady-state power quality early warning index system, the characteristics of PQ disturbance sources are analyzed and summed up. The higher order statistics anomaly detection (HOSAD) algorithm, based on skewness and kurtosis, and hierarchical power quality early warning flow, were then used to mine limit-exceeding and abnormal data and analyze their severity. Cases studies show that the proposed approach is effective and feasible, and that it is possible to provide timely power quality early warnings for limit-exceeding and abnormal data.

Robust Speech Recognition Using Real-Time Higher Order Statistics Normalization (고차통계 정규화를 이용한 강인한 음성인식)

  • Jeong, Ju-Hyun;Song, Hwa-Jeon;Kim, Hyung-Soon
    • MALSORI
    • /
    • no.54
    • /
    • pp.63-72
    • /
    • 2005
  • The performance of speech recognition system is degraded by the mismatch between training and test environments. Many studies have been presented to compensate for noise components in the cepstral domain. Recently, higher order cepstral moment normalization method has been introduced to improve recognition accuracy. In this paper, we present real-time high order moment normalization method with post-processing smoothing filter to reduce the parameter estimation error in higher order moment computation. In experiments using Aurora2 database, we obtained error rate reduction of 44.7% with proposed algorithm in comparison with baseline system.

  • PDF

BLIND IDENTIFICATION OF IMPACTING SIGNAL USING HIGHER ORDER STATISTICS (고차통계를 이용한 충격/불량신호 탐지)

  • Seo, Jong-Soo;J.K. Hammond
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1044-1049
    • /
    • 2001
  • Classical deconvolution methods for source identification following linear filtering can only be used if the transfer function of the system is known. For many practical situations, however, this information is not accessible and/or is time varying. The problem addressed here is that of reconstruction of the original input from only the measured signal. This is known as 'blind deconvolution'. By using Higher Order Statistics (HOS), the restoration of the input signal is established through the maximisation of higher order moments (cumulants) with respect to the characteristics of the signals concerned. This restoration is achieved by constructing an inverse filter considering the choice of the initial inverse filter type. As a practical application, an experimental verification is carried out for the restoration of our impacting signal arising in the response of a cantilever beam with an end stop when randomly excited.

  • PDF

Analysis on the Interactions of Harmonics in Exhaust Pipes of Automotive Engines

  • Lee, Min-Ho;Lee, Joon-Seo;Cha, Kyung-Ok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1867-1875
    • /
    • 2003
  • In exhaust pipes of automotive engines, the pulsating pressure waves are composed of fundamental frequency and high order harmonics. The nonlinearities in the exhaust pipe is caused by their interactions. The error between prediction and measurement is induced by the nonlinearities. We can not explain this phenomenon using linear acoustics theory. So power spectrum, which is used in linear theory, is not useful. This paper is concerned with the development of useful engineering techniques to detect and analyze nonlinearity in exhaust pipe of automotive engines. The study of higher order statistics has been dominated by work on the bispectrum. The bispectrum can be viewed as a decomposition of the third moment (skewness) of a signal over frequency and as such is blind to symmetric nonlinearities. The phenomenon of quadratic phase coupling (QPC) can be analyzed by the bicoherence function. Finally the application of these techniques to data from actual exhaust pipe systems is performed.