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Abstract： Blind source separation (BSS) is a 

fundamental problem that is encountered in many 

practical applications. In most existing methods, 

stationary sources are considered higher-order 

statistics is necessary either explicitly or implicitly. 

But, many natural signals are nonstationary, and it is 

possible to perform BSS using only second-order 

statistics. Our method is based on only second order 

statistics. The algorithms are developed using the 

gradient descent method in orthogonality constraint 

and their performance is confirmed by numerical 

experiments.

1. Introduction

Blind source separation (BSS) problem has been a 

challenging field in many practical applications. To 

solve this problem it is required to recover the 

original information-bearing signal when transmitted 

through a corrupted environment without resorting 

to any prior knowledge except for statistical 

independence of sources. One popular approach to 

BSS might be independent component analysis (ICA) 

which decompose the multivariate observations into 

a linear sum of statistically independent components. 

Most of source separation methods have focused on 

stationary sources, so higher-order statistics (HOS) 

is necessary for successful separation. But, many 

natural signals are inherently nonstationary 

stochastic processes. It was shown in [1] that 

source separation could be achieved by 

decorrelation if sources are independent second- 

order nonstationary stochastic processes.

In this paper we formulate the BSS task problem as a 

correlation matching problem and develop efficient 

辻erative algorithms.

2. Blind Source Separation

In this section, we describe the data model and 

compare correlation matching method with 

probability density matching method.

2.1 Data Model

In the context of source separation, let us assume 

that the m dimensional vector of measurement 

signals, x(t), is generated by a linear data model 

described by

x(Z) = As(t), (1)

where s(t) is the n dimensional vector whose 

elements are called sources. The matrix A g Rmxn is 

called a mixing matrix. The task of source 

separation is to estimate the mixing matrix A (or its 

inverse), given only a fiiHte number of measurement 

signals, {x(M t = 1,…，N. Source vector s(t) is 



assumed to be statistically independer.t.

2.2 Probability Density Matching

BSS or ICA can be illustrated as a pro bability density

matching problem [2]. Let us denote the observed 

density and model density by p°(x) and p(x), 

respectively. As an optimization function to find A 

which best match p°(A) and p(x), the Kullback- 

Leibler divergence is considered [3]. This gives the 

risk 7? that has the formR = KZ，h/(x)||p(x)]= j,o(x)log%쯔 dx ⑵

And, the loss function L isZ = log|deL4|-£logp,.(s,.) ⑶1=1
where log p°(x) was neglected since it does not 

depend on A. Popular ICA algorithms were derived 

from the minimization of the loss function (3) using 

the natural gradient [3]. The adaptation algorithm 

for the mixing matrix A (see [3] for more details) 

has the form

AA - -t]A{I -(p(s)sT} (4)

where 77 > 0 is a learning rate and s = A~lx . In the 

conventional ICA algorithms, one important thing lies 

in how one selects the nonlinear ft action whose 

optimal form depends on the probabi.ity distribution 

of source which is unknown in advance. It is 

necessary to employ the hypothesized density in a 

smart way [4].

3. Correlation Matching Approach

For nonstationary sources, their variances are 

slowly time varying. Thus only mult pie correlation 

matrices instead of probability density function 

allows us to perform the BSS task. In this section we 

describe two different algorithms.

3.1 Mixing Matrix Estimation

Let us denote by R?(k) the correlation matrix of 

observation vector x(t) calculated using the samples 

in the Ath time-windowed data frame. In the same 

manner we define the model correlation matrix by 

Rx (k) = ARs (k)AT. Note that the correlation matrix 

of source vector, Rs(k) is a diagonal matrix for all 

k=l,…,K where K is the number of frames.

Then the error between the correlation matrix of 

observed signals and the model for all k is

E(k) = R°(k)-Rx(k) (5)

From E(k) = 0, we have (z 壬 j)

Rx(i) = ARs(i)AT (6)

5=ARAM (7)

There exists a closed-form solution for A which 

satisfies (6), (7). In such a case, the mixing matrix A 

can be estimated by solving the generalized 

eigenvalue problem. In practice, however, it is not 

clear which i and j guarantee the condition that Rs(i) 

and RsG) have distinctive diagonal elements. In 

order to overcome this drawback, we consider 

multiple data frames, i.e.. K>2. The cost function 

that we consider here is■7 = 支이(幻} ⑻

*=1
In order to avoid degenerate solutions, the 

optimization of the cost function (8) sh。니Id be 

carried out under some constraints. One simple 

constraint is to restrict all the diagonal elements of 

the estimate of A to be unity [5].

The LS estimate of the mixing matrix is obtained by 

minimizing the cost function (8). In order to find the 

minima of the cost function (8), we compute the 

gradients with respect to the corresponding 

parameters which are given by

3 K- = -4g^W (9)
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-—=-2diag{AT E(k}A\ (1。)
dRs(k) 家 1

The LS estimate of the mixing matrix A and source 

correlation matrix Rs(k) are computed iteratively by 

gradient descent method.

We can avoid the constraint that [A]u=l for

by pre-whitening the observation data, Using the 

samples at whole frames we compete the sample 

correlation matrix R? = UDUT where U and D are 

eigenvector and eigenvalue matrices. The whitening

transformation matrix Q isQ = D 2UT . For the sake 

of simplicity we assume that the observation data is 

already wh辻eiied by a transformation Q. In such a 

case the problem of BSS is to find a orthogonal 

mixing matrix. This can be done using the method of 

gradient in orthogonality [6].Algorithm Outline
(1) We assume that the observation data x is 

already pre-whitened. Thus the mixing matrix A 

is an orthogonal matrix.

(2) The A is adapted by the gradient descent 

method in orthogonality constraint.

AJ fdj /a/V 1 (11)
A4 = —— 丁 셰—— A > I 丄丄丿

\dA [初4丿

(3) The model source correlation matrix is updated 

by the conventional gradient method that has the 

form

ARS (k) = T]diag{AT E(k)A] (12)

3.2 Demixing Matrix Estimation

Now we consider a demixing model that is described 

by y(t) = Wx(t) where W is the demixing matrix. 

Then we have Ry (k) = WRX T . We define the 

error between the correlation matrices of the 

estimated source vector y and model source vector s,

E(k) = WRx(k)WT -Rs (k) (13)

Then the correlation matching principle leads to the 

following optimization function

丿 = 支이E(*)E'(*)}• (14)
k=\

In fact the correlation matching method seeks for W 

that jointly diagonalizes Rx(k) for K different frames. 

The gradients are

务=4#(幻幽(盼 (15)

―——=-2diag{E(k)\ (16)
球) 顷

We can find the LS estimate of the demixing matrix 

W using the same method as the one described in 

Section 3.1.

4. Numerical Example

We confirm our method by simple experiment. For 

sources, we have used two digitized speech signals 

sampled at 8 kHz (see Figure 1.). Two mixture 

signals (see Figure 2) were generated using the 

r 1 o 9" 
mixing matrix A given by .

0.7 1 _

The methods described in previous section were 

applied to estimate the mixing matrix and recover 

two original speech signals. The observation data 

was partitioned into 8 nonoverlapping frames and 

each frame size is 1500. The learning rate was 0.1. 

First signals are orthogonalized, and recovered (see 

Figure 3). In contrast to most methods of ICA, here 

we used only multiple correlation matrices to 

estimate the mixing matrix and were able to 

successfully recover the source signals without 

knowing the mixing matrix nor sources.
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Figure 1 Original Speech Signals

Figure 2 Observed Mixture sijjnals

Figure 3 Recovered speech signals

5. Conclusions

We have presented efficient iterative algorithms for 

blind separation of nonstationary sources. Our 

method requires only multiple correlation matrices in 

contrast to most existing BSS algorithms. In the 

framework of correlation matching we described 

how the mixing matrix or the demixin.? matrix could 

be estimated. Iterative algorithms were developed 

using the gradient descent method in orthogonality 

constraint and their performance were confirmed by 

numerical experiments. Although we considered only 

noiseless mixtures, our method can be extended to 

the case of noisy mixtures.
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