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Blind Image Separation with Neural Learning Based on Information Theory and
Higher-order Statistics

El R
(Hyun Cheol Cho - Kwon Soon Lee)

Abstract - Blind source separation by independent component analysis (ICA) has applied in signal processing,
telecommunication, and image processing to recover unknown original source signals from mutually independent
observation signals. Neural networks are learned to estimate the original signals by unsupervised learning algorithm.
Because the outputs of the neural networks which yield original source signals are mutually independent, then mutual
information is zero. This is equivalent to minimizing the Kullback-Leibler convergence between probability density
function and the corresponding factorial distribution of the output in neural networks. In this paper, we present a
learning algorithm using information theory and higher order statistics to solve problem of blind source separation. For
computer simulation two deterministic signals and a Gaussian noise are used as original source signals. We also test the

proposed algorithm by applying it to several discrete images.
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1. Introduction

Independent component analysis (ICA) is a statistical
approach to express a set of random variables or signals
in terms of statistically independent components. The
main purpose of ICA is to recover independent original
sources or signals from observation signals by sensor
systems. Popular applications of ICA are blind source
(signal) separation, blind deconvolution, feature extraction,
and noise cleaning. Blind source separation can be applied
to many areas such as in signal processing, data
communication, speech recognition, and medical science
[1][9]. In a large number of applications, signals received
by sensors such as antennas or microphone systems are
a mixture of original source signals. Generally, these
source signals are usually unknown in case of acoustic
signal processing, radar array or sonar signal processing,
and biomedical signal processing [11[21[41[51{6][71[9]. By
using only the mixed signals observed by sensor
systems, original source signals are estimated or
separated. Therefore, blind source separation may be
represented as estimating or separating original sources
without knowing the characteristics of the transmission
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systems. Fig. 1 shows a block diagram for blind source
separation. An unknown signal vector s with statistically
independent components is defined by

s=[5],805,1" (D

19m

A unknown observation signal vector zER™ is
expressed by
r=As 2

where AER™ ™ is a unknown nonsingular mixing
matrix. Both source vector s and mixing matrix 4 are
unknown, but an observation vector ® is known.
Multiplying a demixing matrix W by an observation
vector Z, we have the separated signals defined by

y= Wee R™ 3

where WER™™ is modeled by neural networks as
shown in Figure 2. The inputs of neural networks as a
demixer are observation signals and the outputs are the
separated signals. To estimate original signals, neurons in
the networks are learned by unsupervised learning
algorithm [10][12]. Since unknown original sources are
zero mean and statistically independent, therefore, both
observation signals x and output signals v are zero mean
and statistically independent signals likewise. Several



approaches based on higher order statistics [13] or
information theory such like negentropy [14], maximum
entropy [15], mutual information [16], and infomax [17] as
well as maximum likelihcod estimation [18], recently have
been developed for blind source separation. In this paper,
we describe neural learning algorithm wusing mutual
information theory and higher order moments to separate
blind image signals.
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Fig. 1 Processing of blind source separation
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Fig. 2 Neural network for blind source separation

2. Mutual Information

The amount of obtained after the
occurrence of & with probability p in a random variable

X is defined by [19]

information

Ka)= log<73*(1;rf)}= ~logp(z) (4

The entropy of X means value of the amount of
information associated with X. The entropy of a
continuous random variable with probability density
function fy(x) is given by

h(X)= ElKz)|= f f Nog f,(z) do (5)

where £ denotes the expectation. The entropy for a
random vector X consisting m random variables is

defined by

hX)= — / fladlogf, (2} de (8)

— o
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We define the conditional entropy of a random vector X
given Y as

R(XY)=h(X, V)=h(Y) (7)
where h(X,Y) is the joint entropy of random vectors X
and Y

h(X}/): / / fz:,(I«@’)Ingxy(f~U)de?} <8)

and fy ;-(:L*,y) is the joint probability density function of
X and Y. The entropy h{X) is a measure of uncertainty
about a system input before observing the system output,
and the conditional entropy A{X¥) is a measure of
uncertainty about a system input after observing the
system output. We define the difference between h{X)
and h(XY) as the mutual information [{X¥) between
X and ¥V

it

(X V)= h(X)~h(XIY) )]

/ f f.( AT y)log( ff<( 2y )) }d:rdy

-

By the definition of conditional probability we have

. fX}(T 7}> )

j.z‘(lf[y)_ fy( ) (10)
then rewrite (11) to

[XY)= h(X)—h(X]Y) (1

fﬁw/ foy(@y) lob( f( (;flj/g )>da:dy

The mutual information between X and Y is equal to
the Kullback-Leibler
probability density function fy yr{ac,y) and the product of
f!((l‘} and fy(y) We

use the special case that is the Kullback-Leibler

divergence between the joint

the probability density functions
divergence between the probability density function f X{x)

and the product of its marginal probability density
functions fy (z,)120]

( Ixle)

The ith marginal probability density function is defined
by
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where dz” is a (m-1)x1 vector left after removing the
ith element of a vector . We rewrite (14) in the
expanded form

Df,yﬂf,\', = ‘/‘jcme(anng(l')dI’ (14)

- i foc fx(af)logx(xi)d;v

i=1Y ~

Because of da:=dx{i)dxi, we rewrite in the second

integral term of (12)

/jo Fla)log f x(z,)dx (15
= /mlogf)g(:vi)ciw /mf,\,(x)d:cmdm;

By using (13), we rewrite (15) as

/'m fX(E)Ing)Q (‘T?)dx (16)

= b/‘jo FxlaNogfy (z;)dr,
=~hy (x,)

Finally, we simplify the Kullback-Leibler divergence in

(14) by substituting (6) and (16) to obtain the objective
(contrast) function for blind source separation [21]

Dy, = X0+ h, (2) (17)

i=1

where h X(:ci)is the ith marginal entropy based on the

i“ﬁ*marginal probability density function.

3. Learning of Neural Networks

We rewrite the Kullback-Leibler divergence by

applying (3) to (17)

3%

D( W/):_h(y>+ Zhy(%) (18)

i=1

Using properties of entropy (see Appendix I), the entropy
k(y) in (18) is expressed by

h(y) = h(z)+ logldet( W) ‘ (19)
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where det(W) is the determinant of W. To calculate
hx(yi) we need the marginal distribution of y; and must

then integrate out the effects of all the components of the
random vector ¥. But it is usually difficult to calculate
hx(yi) because of high dimensionality of y. We derive

an approximate expression for the marginal probability
density function f y;(',%’) in terms of higher-order

moments of ¥ using the Gram-Charlier expansion [20].
. ey K,
fy'(Yg)': a(%){l'{"_é%ng(y;)'*”q%H;(yl)} (20)

where a(yf) is the probability density function of a
normalized Gaussian random variable with zero mean and

unit variance, i.e.

3’—) | @)

1
aly) = —=eup| 3

and Hk(y,) are Chebyshev Hermite polynomials. The kth

order cumulant of ¥, [21] is given by

K= Ey,) (22-1)
K ,= Ely}) —(Ely,))* (22-2)
K 3= E(y}) = 3By, E(y}) +2(Ely,))’ (22-3)
K = Ely!) - 3(E(y})"— 4E(}) Ely,) (22-4)

+ 12E(y2 ) (Ey,))” —6(Ely,))*
Finally by applying the expansion of a logarithm we hgwe

2
log(1+¢) zc—%+ o) (23)
Chebyshev Hermite

polynomials, we may expand the marginal entropy in the
right hand side of (18) [15]

and using properties of the

. (k)"
kw(%) =~ Elog(%fe) 12 o
(ks 5 L (k)
T +§(k¢,3>2k¢,4+ﬁ<k’\*)3

By substituting (19) and (24) to (18), we have

D(wW) z-—h(:zt)-dogldet(W}I+1§-log(2m)

k)2 (k)b 5k )%, ki ,)?

( 1,3) + ( 114) + O( z,3> 1,4 ( 3,4

12 48 8 16
(25)




We differentiate the objective function in (25) with
respect to W to derive a neural network learning

algorithm. Assuming zero mean, derivatives of terms in
(25) are

a 7 — a
dwiklc)gldet(mlm(w D (26)
2= . .
8%(”) 6y} ) E(y} )z, (27)
8
r(ké,4)2: 8E(y§)E(y§>$k_24E(y?)wk (28)
Wi
Fur (k 37k, = 6E(y ) E(y?) E(yf )z, (29)
= BEy)) By )z, + 4(E(y) ),
3

o= (k)= 12(8y) = 3)° By ), (30)
Wik

where w,;; denotes the ikth cofactor in Wisee Appendix

I for proofs of (27)-(30)). Replacing expectations with

their instantaneous values we obtain

i}

@(@3} 6y x, (31)
5%;(’%4) (8y] — 24y )z, (32)
—a—;%<k¢<3>2f«i.4= (107 184z, (33)
5o U= (124 =72 4108y, 39

Using (31)-(34), we obtain the derivative of (25) is

8
ow,y,

DIW) =— (W ), +&(y, )z, (35)

where ¢(y,) is an activation function for neural networks

learning given by

29, 47 .
oly) = = ?

14 . .25 4 3
Y o+ 22y

PR e vy

(36)
The objective of the learning algorithm is to minimize the
Kullback-Leibler divergence in (25), and is implemented
using a gradient descent adjustment of the weights of
neural networks
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Aw, —77—-—9( W) 37
Wik

_U((W 1>rk yz>‘ri

where 7 is learning rate. We rewrite (37) in a matrix
form

AW= (W T=¢(y)z’) (38)
where ¢{y) is a column vector of an activation function

Ply) =0y, oy, 8y, )17 (39)

By applying y7 =27 W’ to (40), we obtain
AW= =y Ww 7 (40)
=pl-o(yTw "

Because a mixing matrix 4 is nonsingular, it is more
useful to describe (40) by a natural gradient descent
algorithm [22] as

aD( W)

AW=T

wTw (41

We finally write the update rule for adapting neural
network weighs

Wik+1) = W(k) +nlI—(y(k))y "1 (Wlk) WHk)) W k)
= Wik} +nl/—2(y(k)y" (k)] Wk)
(42)

4. Computer Simulation

We use two images as original sources shown in Fig.
3 and its histograms are provided in Fig. 4. We
normalize the gray value for each pixel. Fig. 5 shows the
waveform of the normalized signals (I1st and 2nd). The

mixing matrix A in this simulation is selected by

_ 102 05
=0 03]

(43)
The image mixed with the mixing matrix (43) is shown
in Fig. 6 and its waveforms are shown in Fig. 5 (3rd
and 4th). We select the initial matrix

0.7294 —0.3546

W=1_02323 04726 44)
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After 393216 learning iterations, we obtained the best
result and the corresponding separated signals shown in
Fig. 7. The 5th and 6th waveforms in Fig. 5 show the
normalized waveforms of the separated images. Next, we
use only one image mixed with a Gaussian random noise.
Fig. 8 shows the mixed images applying the mixing
matrix of (43). The initial demixing matrix is also the
same as (44). The separated signals are shown in Fig. 9.
This application is used to a noise extraction. Lastly, we
have two original images in Fig. 10 and the histograms
of the original images are shown in Fig. 11. The mixing
matrix is similar to (43) and the initial weight matrix is

|

0.1182 — 0.0321]
—0.0398 0.0513

(45)

(a)

(b

Fig. 3 Original images
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Figs. 12 and 13 show the mixing images and the
separated images, respectively. As seen, the separated
image of the left side in Fig. 13 is the inversion of the
original image. We can easily restore the image using
simple inversion. The restored image is shown in Fig. 14.
We provide a qualitative comparison to a well known
blind source separation approach [23]. The authors in [23]
addressed the blind separation algorithm with faster
convergence property, which has quadratic or cubic
convergence, whereas the gradient method in our
proposed algorithm has only linear convergence. However,
the result in [23] is somewhat theoretical since the
learning is likely to be local convergence. Thus, the latter
is hardly implemented for online separation algorithm, but
our algorithm is computational efficiency and applicable in
practice.
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|
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Fig. 5 Waveform of normalized source signals
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Fig. 7 Separated images

(b)

Fig. 8 Mixing images with a Gaussian noise
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(b)
Fig. 10 Original images
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Fig. 11 Histogram of original images

(a)
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Fig. 12 Mixing images

Fig. 13 Separated images
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Fig. 14 Inversion of separated image

5. Conclusions

We propose an approach o blind source separation
using information theory and higher order statistics.
Because the separated signals are assumed as mutually
independent, mutual information for each signal is zero
and thus the Kullback-Liebler convergence is minimized
to recover original source signals. A learning algorithm
for neural networks as a demixer is derived by mutual
information and higher order moments so as to minimize
the Kullback-Liebler convergence as the neural networks
are learned. We use several image sources to test the
purposed approach for computer simulation and obtained
simulation results with the separated signals close to the
original sources. Future work includes investigation of
online learning algorithm for real time blind source
separation in practical application.

Appendix I

From the definition of entropy in (5), value of the
following entropy is invariant

h(X+c)= h(X) (A-1)
where c¢ is constant. Another useful formula is
h{aX) =h(X)+loglal (A-2)

where a is a scaling factor. Consider a probability
density function scaled by a

f,(y) = %f(%) (A-3)

We can rewrite the formula of entropy applying (5)

Blind Image Separation with Neural Leaming based on Information Theory and Higher-order Statistics 1461
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h(Y) =— Ellogf . (y)] (A-4)
)

=- E[logfr(%)—loglal

= _Ellogfr(%)}+logfaf

By putting Y=aX in (56), finally we obtain

h(aX) =— f jo fx(z)logf y{a)dx +1ogldl (A-5)
= h(X) +loglal

Appendix II

Proof of (28)
The mixing matrix W is rewritten by using Laplace’s
expansion [20] as

det(W) =Y Jw, A, (A-6)
i=1

where A;;, denote ikth cofactor of W. Substituting (A-6)

to the left hand side in (26) we have
—2_Jogidet( W)= Gulder() (A7)
W, (VV)| ow
A
Idet( W)l
(W,

Proof of (27)-(30)
First, we calculate the partial derivative with respect to
wik for the third moment

8
ow;),

(k}j?g) = 0 E(y?) (A-8)
v E((wyzx,)?)

_ 3E((wikxk)2)(%

ik

E( (wzkIzk))

= 3E(y))z,
and fourth moments

d

(k) = o (1) —3(EGH)) (4-9

Jwyg
0 4
= o,y (E(yz ))
= 6_5“(E(w7k37k)4)
ik
= 4E((wikxk)3)xk
=48y} )x,
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By substituting (A-8) and (A-9), we have

%ﬂc(m) =2k, ks (A-10)
= 2E(y¢ )3(% ):Ek
= 6E(y}) v}z,
B%:(k )2 2k’48 k4 (A-1D)
= 2(B(y}) —3) 4E(y})z,)
= 8E(y}) By} )z, — 24 By} ),
%%(kivg)%ﬂzikgk Ry ks (A1)
= 6 E(y}) E(y} )z, (E(y;) —3)
+(B(y}))4E(y})) z,
= 6By} E(y}) E(y] )z,
18E(yZ)E(yZ)zk+4E(yl))
a

(ki 1) = 3k2 k/'i,4 (A-13)

m R 7.4 Sw
= 3(&( i) 3)4E(y})z,
= 12(E(y}) B(y2)) 2B}z,
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