• Title/Summary/Keyword: Higher-order Method

Search Result 3,903, Processing Time 0.035 seconds

An Incompressible Flow Computation by a Hierarchical Iterative and a Modified Residual Method (계층적 반복과 수정 잔여치법에 의한 비압축성 유동 계산)

  • Kim J. W.
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.57-65
    • /
    • 2004
  • The incompressible Navier-Stokes equations in two dimensions are stabilized by a modified residual method, and then discretized by hierarchical elements. The stabilization is necessary to escape from the Ladyzhenskaya-Babuska-Brezzi(LBB) constraint and hence to achieve an equal order formulation. To expedite a standard iterative method such as the conjugate gradient squared(CGS) method, a preconditioning technique called the Hierarchical Iterative Procedure(HIP) has been applied. In this paper, we increased the order of interpolation within an element up to cubic. The hierarchical elements have been used to achieve a higher order accuracy in fluid flow analyses, but a proper efficient iterative procedure for higher order finite element formulation has not been available so far The numerical results by the present HIP for the lid driven cavity flow and others showed the present procedure to be stable, very efficient and useful in flow analyses in conjunction with hierarchical elements.

SOLVING HIGHER-ORDER INTEGRO-DIFFERENTIAL EQUATIONS USING HE'S POLYNOMIALS

  • Mohyud-Din, Syed Tauseef;Noor, Muhammad Aslam
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.2
    • /
    • pp.109-121
    • /
    • 2009
  • In this paper, we use He's polynomials for solving higher order integro differential equations (IDES) by converting them to an equivalent system of integral equations. The He's polynomials which are easier to calculate and are compatible to Adomian's polynomials are found by using homotopy perturbation method. The analytical results of the equations have been obtained in terms of convergent series with easily computable components. Several examples are given to verify the reliability and efficiency of the proposed method.

  • PDF

AN EXTRAPOLATED CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR NONLINEAR SOBOLEV EQUATIONS

  • OHM, MI RAY;SHIN, JUN YONG
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.257-270
    • /
    • 2018
  • An extrapolated Crank-Nicolson characteristic finite element method is introduced for approximate solutions of nonlinear Sobolev equations with a convection term. And we obtain the higher order of convergence for approximate solutions in the temporal and the spatial directions with respect to $L^2$ norm.

HIGHER ORDER ITERATIONS FOR MOORE-PENROSE INVERSES

  • Srivastava, Shwetabh;Gupta, D.K.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.171-184
    • /
    • 2014
  • A higher order iterative method to compute the Moore-Penrose inverses of arbitrary matrices using only the Penrose equation (ii) is developed by extending the iterative method described in [1]. Convergence properties as well as the error estimates of the method are studied. The efficacy of the method is demonstrated by working out four numerical examples, two involving a full rank matrix and an ill-conditioned Hilbert matrix, whereas, the other two involving randomly generated full rank and rank deficient matrices. The performance measures are the number of iterations and CPU time in seconds used by the method. It is observed that the number of iterations always decreases as expected and the CPU time first decreases gradually and then increases with the increase of the order of the method for all examples considered.

A Link Between Integrals and Higher-Order Integrals of SPN Ciphers

  • Li, Ruilin;Sun, Bing;Li, Chao
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.131-141
    • /
    • 2013
  • Integral cryptanalysis, which is based on the existence of (higher-order) integral distinguishers, is a powerful cryptographic method that can be used to evaluate the security of modern block ciphers. In this paper, we focus on substitution-permutation network (SPN) ciphers and propose a criterion to characterize how an r-round integral distinguisher can be extended to an (r+1)-round higher-order integral distinguisher. This criterion, which builds a link between integrals and higher-order integrals of SPN ciphers, is in fact based on the theory of direct decomposition of a linear space defined by the linear mapping of the cipher. It can be directly utilized to unify the procedure for finding 4-round higher-order integral distinguishers of AES and ARIA and can be further extended to analyze higher-order integral distinguishers of various block cipher structures. We hope that the criterion presented in this paper will benefit the cryptanalysts and may thus lead to better cryptanalytic results.

A higher order shear deformation theory for static and free vibration of FGM beam

  • Hadji, L.;Daouadji, T.H.;Tounsi, A.;Bedia, E.A.
    • Steel and Composite Structures
    • /
    • v.16 no.5
    • /
    • pp.507-519
    • /
    • 2014
  • In this paper, a higher order shear deformation beam theory is developed for static and free vibration analysis of functionally graded beams. The theory account for higher-order variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The material properties of the functionally graded beam are assumed to vary according to power law distribution of the volume fraction of the constituents. Based on the present higher-order shear deformation beam theory, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain frequencies. Different higher order shear deformation theories and classical beam theories were used in the analysis. A static and free vibration frequency is given for different material properties. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

New Higher-Order Fixed-Interface Component Mode Synthesis by Applying a Field-Consistency Concept (장-일치 개념을 적용한 신 고차 구속 모드 합성법)

  • Kang, Jeong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.536-542
    • /
    • 2000
  • The present paper introduces a new fixed interface component mode synthesizing technique based on the notion of higher-order field-consistency. The present technique employs higher-order residual constraint modes in addition to lower fixed interface normal modes while consistency in matching field variables at the substructure interface is maintained. The present field-consistency approach does not increase the size of the synthesized system even if higher-order residual constraint modes are included. A new field-consistent higher-order synthesis technique is first presented and a numerical example is given to verify the present method.

  • PDF

A 3-Dimentional Radiation Diffraction Problem Analysis by B-Spline Higher-Order Panel Method

  • Kim Gun-Do;Lee Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.10-26
    • /
    • 2006
  • The radiation problem for oscillating bodies on the free surface has been formulated by the over-determined Green integral equation, where the boundary condition on the free surface is satisfied by adopting the Kelvin-type Green function and the irregular frequencies are removed by placing additional control points on the free surface surrounded by the body. The B-Spline based higher order panel method is then applied to solve the problem numerically. Because both the body geometry and the potential on the body surface are represented by the B-Splines, that is in polynomials of space parameters, the unknown potential can be determined accurately to the order desired above the constant value. In addition, the potential expressed in B-Spline can be differentiated analytically to get the velocity on the surface without introducing any numerical error. Sample computations are performed for a semispherical body and a rectangular box floating on the free surface for six-degrees of freedom motions. The added mass and damping coefficients are compared with those by the already-validated constant panel method of the same formulation showing strikingly good agreements.

Speaker Identification Using Higher-Order Statistics In Noisy Environment (고차 통계를 이용한 잡음 환경에서의 화자식별)

  • Shin, Tae-Young;Kim, Gi-Sung;Kwon, Young-Uk;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.25-35
    • /
    • 1997
  • Most of speech analysis methods developed up to date are based on second order statistics, and one of the biggest drawback of these methods is that they show dramatical performance degradation in noisy environments. On the contrary, the methods using higher order statistics(HOS), which has the property of suppressing Gaussian noise, enable robust feature extraction in noisy environments. In this paper we propose a text-independent speaker identification system using higher order statistics and compare its performance with that using the conventional second-order-statistics-based method in both white and colored noise environments. The proposed speaker identification system is based on the vector quantization approach, and employs HOS-based voiced/unvoiced detector in order to extract feature parameters for voiced speech only, which has non-Gaussian distribution and is known to contain most of speaker-specific characteristics. Experimental results using 50 speaker's database show that higher-order-statistics-based method gives a better identificaiton performance than the conventional second-order-statistics-based method in noisy environments.

  • PDF

Effect of higher order terms of Maclaurin expansion in nonlinear analysis of the Bernoulli beam by single finite element

  • Zahrai, Seyed Mehdi;Mortezagholi, Mohamad Hosein;Mirsalehi, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.949-966
    • /
    • 2016
  • The second order analysis taking place due to non-linear behavior of the structures under the mechanical and geometric factors through implementing exact and approximate methods is an indispensible issue in the analysis of such structures. Among the exact methods is the slope-deflection method that due to its simplicity and efficiency of its relationships has always been in consideration. By solving the differential equations of the modified slope-deflection method in which the effect of axial compressive force is considered, the stiffness matrix including trigonometric entries would be obtained. The complexity of computations with trigonometric functions causes replacement with their Maclaurin expansion. In most cases only the first two terms of this expansion are used but to obtain more accurate results, more elements are needed. In this paper, the effect of utilizing higher order terms of Maclaurin expansion on reducing the number of required elements and attaining more rapid convergence with less error is investigated for the Bernoulli beam with various boundary conditions. The results indicate that when using only one element along the beam length, utilizing higher order terms in Maclaurin expansion would reduce the relative error in determining the critical buckling load and kinematic parameters in the second order analysis.