
Integral cryptanalysis, which is based on the existence of 
(higher-order) integral distinguishers, is a powerful 
cryptographic method that can be used to evaluate the 
security of modern block ciphers. In this paper, we focus 
on substitution-permutation network (SPN) ciphers and 
propose a criterion to characterize how an r-round 
integral distinguisher can be extended to an (r+1)-round 
higher-order integral distinguisher. This criterion, which 
builds a link between integrals and higher-order integrals 
of SPN ciphers, is in fact based on the theory of direct 
decomposition of a linear space defined by the linear 
mapping of the cipher. It can be directly utilized to unify 
the procedure for finding 4-round higher-order integral 
distinguishers of AES and ARIA and can be further 
extended to analyze higher-order integral distinguishers of 
various block cipher structures. We hope that the criterion 
presented in this paper will benefit the cryptanalysts and 
may thus lead to better cryptanalytic results. 
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I. Introduction 

1. Backgrounds  

Integral cryptanalysis, which considers the propagation of the 
sums of many values, was formally introduced by Knudsen and 
Wagner in [1]. As they pointed out [1], it is especially well suited 
for analyzing ciphers with primarily bijective components and is, 
in fact, a more generalized form of many specific attacks, 
including the square attack [2], saturation attack [3], and multiset 
attack [4]. These specific methods exploit the simultaneous 
relationships between many encryptions, in contrast to 
differential cryptanalysis [5], in which only pairs of encryptions 
are considered. Consequently, integral cryptanalysis can apply to 
a lot of block ciphers that are not vulnerable to differential 
cryptanalysis. These features have made integral cryptanalysis an 
increasingly popular tool in the field of cryptanalysis.  

The substitution-permutation network (SPN) structure is one 
of the most widely used block cipher structures. Examples of 
algorithms that use the SPN structure are the well-known block 
cipher algorithms AES [6] and ARIA [7]. The SPN structure 
iterates the combination of a substitution and a permutation (or 
a linear transformation), and, thus, its resistance against 
differential and linear cryptanalysis [8] is well understood (for 
example, see [9]-[11]). 

To apply integral cryptanalysis, adversaries should firstly 
find a (higher-order) integral distinguisher of the reduced-round 
cipher to distinguish it from a random permutation. The most 
well-known integral distinguisher of an SPN cipher is the    
3-round integral distinguisher [12] of AES. This kind of 
distinguisher needs a special structure of 28 plaintexts with the 
property that one byte of input is active (takes all possible 256 
values), while all the other 15 bytes are constants. Feeding 
these 28 plaintexts into a 3-round AES encryption procedure 
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will result in ciphertexts with the property that the bit-wise 
exclusive OR (XOR) of all values in any byte position is zero. 
This 3-round distinguisher can be used to attack AES reduced 
to four, five, and six rounds. 

A new distinguishing property between the 4-round AES 
and a random permutation was constructed in [13], which 
enables 7-round attacks on AES. In [14], another observation 
was made on the 4-round AES, which led to an improvement 
in the running time of the attack. The main observation is that 
if one can obtain the 232 plaintexts that take all possible values 
in the diagonal four bytes, then after one round of AES 
encryption, those 232 plaintexts will correspond to another 232 
intermediate values, which form 224 copies for the input of a 
3-round integral distinguisher in the forthcoming 3-round 
encryption process (round 2 to round 4). Since the text in 
each integral sums to zero in any byte after the fourth round, 
so does the sum of all 232 texts. This kind of distinguisher was 
later formalized in [1] and referred to as a 4-round higher-
order (4th-order) integral distinguisher. Accordingly, the 
original 3-round integral distinguisher can be treated as a   
1st-order integral distinguisher. 

Let n be the number of words (subblocks) in the plaintext 
and ciphertext and m be the number of bits in a word. In the 
original paper [1], a higher-order integral is defined according 
to the number of active words. A d-th-order (1 ≤ d ≤ n–1) 
integral is the sum of ciphertexts whose corresponding 
plaintexts contain just d active words (range over all possible 
2md values in the d-tuple position), while the traditional integral 
with one active word can be treated as a 1st-order integral. This 
kind of notation is suitable when explaining the 3/4-round 
integral distinguisher of AES as introduced in the previous 
paragraphs. Besides, the authors in [1] also demonstrated the 
feasibility of using higher-order integrals to analyze two block 
cipher structures: Nyberg’s generalized Feistel networks and 
the Skipjack structure. 

2. Motivation, Merit, and Outline of This Paper 

Now that a 3-round 1st-order integral distinguisher of AES 
can be easily extended to a 4-round 4th-order integral 
distinguisher, what about other SPN ciphers?  

Consider the block cipher ARIA, whose design is very 
similar to AES. The designers of ARIA believed that no 
integral distinguisher exists with more than two rounds due to 
the better avalanche effect of the diffusion layer. In fact, if the 
number of active bytes is limited to one, it is correct that there 
only exist 2-round distinguishers. However, these 2-round 1st-
order integral distinguishers can be extended to many 3-round 
d-th-order integral distinguishers with d ≥ 7 (as will be shown 
in subsection III.4). Unfortunately, these 3-round distinguishers 

are not the best ones since, in [15], 144 3-round 3rd-order 
integral distinguishers1) of ARIA were found using the 
technique of counting method. Therefore, one may wonder 
whether this kind of 3-round integral distinguisher could be 
further extended to some 4-round distinguishers. However, it 
seems difficult to utilize the direct approach to extend the 
distinguisher of ARIA in a similar way to the distinguisher of 
AES. This problem was studied in [16], in which the 3-round 
3rd-order integral distinguishers were modified to 3-round  
4th-order integral distinguishers, and 24 4-round 12th-order 
integral distinguishers were thus obtained. It should be noted 
that these 4-round 12th-order integral distinguishers were used 
to mount a 7-round attack on ARIA [16], while the 3-round  
3rd-order integral distinguishers only led to a 6-round attack [15]. 

As has been observed, higher-order integral distinguishers 
have been widely used to analyze many famous SPN ciphers, 
but there exist some related, yet unsolved, problems. A general 
problem is as follows. 

Assume there is an r-round u-th-order integral (the basic 
integral) distinguisher of an SPN cipher, can this basic integral 
distinguisher be extended to some (r+1)-round v-th-order (v≥u) 
integral (the extended higher-order integral) distinguisher? If so, 
how can we extend it? 

To the best of our knowledge, no general solution to this 
problem is known, and previous techniques seem to be more 
empirical. In this paper, we borrow from linear algebra with the 
theory of direct decomposition of a linear space to build a link 
between the integrals and the higher-order integrals of SPN 
ciphers. We show that if the matrix of the linear transformation 
in the diffusion layer satisfies a rank property, then the basic 
integral distinguisher can be directly extended to a higher-order 
integral distinguisher2). This proposed criterion can be used to 
unify the procedure for finding 4-round higher-order integral 
distinguishers of AES and ARIA, and it can further be adopted 
to analyze higher-order integral distinguishers for various block 
cipher structures. 

The remaining content of this paper is divided into four 
sections. A brief description of SPN ciphers is given in section 
II. The main result concerning the relationship between integral 
and higher-order integral distinguishers of SPN ciphers with 
application to AES and ARIA is presented in section III. 
Section IV extends the main result to other block cipher 
structures. Finally, section V contains the conclusion.  
                                                               

1) In fact, there are in total 176 integral distinguishers of the 3-round ARIA when the 
number of active bytes of the inputs is fixed to 3. Among these distinguishers, only 144 are 
listed in [15]. 

2) It should be emphasized that not all (extended) higher-order distinguishers of SPN 
ciphers can be obtained directly from the (basic) integral distinguishers only through a linear 
transformation. For instance, the 2-round first-order integral distinguishers [7] of ARIA cannot 
be directly extended to the 3-round third-order integral distinguishers [15], which are found by 
the counting method. 
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II. SPN Ciphers 

The class of SPN cipher considered in this paper iterates the 
combination of a substitution (a nonlinear transformation) and 
a linear transformation. Its block length is mn-bit (or m-word 
with a word being n-bit), and the round function consists of three 
basic operations: a substitution layer γ, a diffusion layer θ, and a 
round key addition layer σ. Let us denote as the finite field 
with elements 0 and 1. We briefly describe the three layers, as 
well as the whole cipher, as follows. 

2F

1. Substitution Layer γ 

The substitution layer γ is a nonlinear word-oriented 
substitution that applies parallel nonlinear bijective mappings 
on  At the i-th round,  is defined as 2 .mF 2 2m mi : n nγ →F F

1 2 ,1 1 ,2 2 ,( , , , ) ( ( ), ( ), , ( )),i n i i i n nx x x s x s x s xγ … = …  

where each ,i js is an m-bit nonlinear substitution and the si,j’s 
are not necessarily identical.  

2. Diffusion Layer θ 

The diffusion layer θ is an invertible linear transformation on 

2  that can be represented by an invertible matrix 2 . 
That is, given an input X, the output can be obtained through 
Y=P(X).  

m
nF m

n nP ×∈F

3. Round Key Addition Layer σ 

The round key additional layer σ is defined simply by the bit-
wise XOR of the input and the round key. Thus, at the i-th 
round, ( )i ix X Kσ = ⊕ , where X is the input and Ki is the mn-
bit round key and may be generated from the key schedule of 
the cipher. 

4. Whole Cipher 

A typical r-round SPN cipher firstly applies a round key 
addition (also called the “whitening”), and then iterates the 
round function r–1 times; the last round is the same but 
excludes the diffusion layer. We can describe the encryption 
procedure by 

( )1
1 0( ) ( ).r

k r r i i i iE σ γ σ θ γ σ−
=⋅ = ⋅D D D D D◯  

ARIA is a good example that belongs to the above SPN 
ciphers. For AES, the round function comprises SubBytes, 
ShiftRows, MixColumns, and RoundKeyAdditions. If we 
define a new linear transformation as the composition of 
ShiftRows and MixColumns, then AES could also be regarded 
as the kind of SPN ciphers described above.  

III. Link Between Integrals and Higher-Order 
Integrals of SPN Ciphers 

In this section, we first give some preliminaries, particularly 
the definitions of “integral” and “higher-order integral,” and 
then we present the main result that builds a link between an  
r-round integral (basic integral) and an (r+1)-round higher-
order integral of an SPN cipher. We end this section by 
applying the result to the block cipher AES and ARIA. 

1. Integrals and Higher-Order Integrals 

An integral distinguisher considers the propagation of sums 
of many values, and, in general, it takes a special structure of 
plaintexts as input, in which each component (subblock or 
word) is active or passive (see definitions below) and its output 
has similar properties, that is, some components of the 
ciphertexts are active, passive, or balanced. 

Definition 1. A set 2 is active if 
for all 0 ≤ i < j ≤ 2

{ | ,0 2 1}m
m

i ia a i∈ ≤ ≤ −F
m–1, ai ≠ aj. A set 2  

is passive or constant if for all 0<i≤2
{ | ,0 2 1}m

m
i ia a i∈ ≤ ≤ −F

m–1, ai=a0. A set 
 is balanced if the bit-wise XOR  2{ | ,0 2 1}m

m
i ia a i∈ ≤ ≤ −F

sum of all elements of the set is 0, that is, . We  2 1
0 0

m

i ia−
= =⊕

use A to denote an active set, C to denote a passive or constant 
set, and B to denote a balanced set. 

The above notation of “active” is defined for one word, and 
it can be extended to a more generalized case. For example, 
when referring to d active words, it means a set of 2md values 
that range over 2  in the d-tuple position. According to this 
convention, we introduce the following definition of (higher-
order) integral, as in [1]. 

m
dF

Definition 2. A d-th-order integral of a block cipher is the 
sum of the ciphertexts whose corresponding plaintexts form a 
special structure with just d active words. 

Definition 3. A d-th-order integral distinguisher of a block 
cipher takes a special structure with d active words as input; its 
output form is a d-th-order integral that can be predicted, that is, 
some components of the ciphertext are active, constant, or 
balanced.  

For convenience, we will sometimes use “(higher-order) 
integral” as the short notation for “(higher-order) integral 
distinguisher.” 

Let  
1 2 1 2{ , , , },{ , , , } {1,2, , }d ki i i j j j n…  … ⊆ … . 

Then, a typical d-th-order integral distinguisher of a block 
cipher can be represented by 

1 2 1 2, , , , , , ,
d ki i i j j jA B… …→  

where 
1 2 d

 denotes that there are d active words of the 
input (plaintexts) with indices , and 

, , ,i i iA …

1 2, , , di i i…
1 2, , , kj j jB …  
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denotes that the words of the output (ciphertexts) with indices 
 are all balanced. 1 2, , , kj j j…

As for an r-round block cipher, several (higher-order) 
integral distinguishers may exist, and the following definition is 
essential. 

Definition 4. An r-round (higher-order) integral distinguisher 
of a block cipher is called optimal if the number of active 
words of the inputs is the minimum amount needed. 

In the next subsection, we will solve the following problem: 
given an r-round u-th-order integral of an SPN cipher, which is 
referred to as the r-round basic integral, how can this r-round 
basic integral be extended to an (r+1)-round v-th-order (v ≥ u) 
integral? 

2. Main Result 

We show the main theorem of this paper, which provides an 
approach to show how an r-round basic integral distinguisher 
of SPN ciphers can be extended to an (r+1)-round higher-order 
one. The link between a basic integral and a higher-order 
integral is built through the matrix of the linear transformation 
in the diffusion layer and is based on the decomposition of the 
linear space defined by the linear mapping of the block cipher. 

Let us denote the matrix of the linear transformation of an 
SPN cipher by , where  is the (i, j)-entry of 
the matrix. Let 

,( )i j n nP p ×= ,i jp
,A BP  be the matrix obtained from P by 

selecting the rows from A and the columns from B.  
Since there is a correspondence between the vector space 

 and the finite field 2 , we thus denote the bit-wise XOR 
“ ⊕ ” between the elements simply by “+.” 

2
mF mF

The main result is the following theorem. 
Theorem 1. Given an r-round u-th-order integral (as the 

basic integral) distinguisher of an SPN cipher, for which the 
active word indices of the input form the set U={r1,r2, …,ru}, 
let 

1 2{1,2, , } { , , , }n uU n U s s s −= … − = … , 

1 2{ , , , },vV t t t v u= …  ≥ , 

and 

( ),, ( )a bs tU V n u v
P p

− ×
= . 

If  
,rank( )U VP v= − u ,             (**) 

then there will exist an (r+1)-round v-th-order integral (extended 
higher-order integral) distinguisher with the associated set 
formed by the active word indices of the inputs equal to V. 

Proof. Let us consider a structure of plaintexts in the (r+1)-
round SPN cipher, with active word positions t1, t2, …, tv (and 
all the other n–v words are passive). Thus, this structure 

consists of 2mv plaintexts. 
After the initial key whitening, these plaintexts will pass 

through a nonlinear bijective transformation. Let us denote 
these intermediate values by 

1 2
( , , , , , , )

v

T
t t tX X X X= … … … … , 

where the v entries 
1 2
, , ,

vt t tX X X…  range over  and 
the other n–v entries are constants. These 2

2m
vF

mv values will then 
be fed into the linear transformation whose output can be 
represented by Y=PX. Note that n–v indices of the constant 
components of X form a set, {1,2, , }V n= … −V ; thus, 

1
b b

v

j j j j t t
j V j V b

Y PX P X P X P X C
∈ ∈ =

= = + +∑ ∑ ∑� ,    (1) 

where Pj  is the j-th column vector of P, Xj  is the j-th 
component of X, and  is a constant vector. 2m

nC ∈F
Let and 

 or, equivalently,  is the submatrix of P 
composed of the v column vectors ; then, (1) 
becomes 

1 2 1 2 2( , , , ) ( , , , ) m
v

v
t t t vX X X Z Z Z Z… = … ∈� F

,( )
bV i t nP p ×= v

}

F

VP

1 2
, , ,

vt t tP P P…

                           (2) .VY P Z C W C= + +�

Equation (2) implies that all values of Y will form an affine 
space  defined by Y

2{ | , m
v

VC W C W P Z Z= + = + =  ∈Y W F , 

where  is a linear space over 2  defined 
by , and C is the offset. 

2m
n⊆W F mF

2
Regarding linear space , one can see thatdi  

since , and the result follows from the 
fact that P is invertible, leading to the independent property of 
the v column vectors of P

{ | , }m
v

VW W P Z Z= =  ∈W
W m( ) v=W

dim( ) rank( )VP=W

V. 
Next, we will show that the linear space is a direct sum 

( ) of two other linear spaces, and , with dimensions 
u and v–u, respectively. Linear spaces  and  can be 
constructed as follows. 

W
+� 1W 2W

1W 2W

Let and set  
where each  is defined as 

, ,( )
a bU V r t u vP p ×= 1 1 2{( , , , )},nα α α= …W

iα

,
1

, if

f

,

.0, i

b

v

i t b
i b

Z ip U

i U

α =

⎧
   ⎪

= ⎨
⎪                  

∈

∈/⎩

∑  

Let , ( ), ( )
a bs t n u vU VP p − ×= and set 2 1 2{( , , , )}nβ β β= …W , 

where each iβ  is defined as 

,
1

, if

0

,

, if

b

v

i t b
i b

Z ip U

i U

β =

⎧
   ⎪

= ⎨
⎪

      

∈

∈           /  .⎩

∑  
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According to the above definitions,  and  are 
linear spaces (subspaces of ). Since 

1W 2W
W {1, 2 , },U U n∪ = …  

and ,U U∩ = ∅ we have , which implies 
that  is a direct sum of two linear spaces.  

1 2 {0}∩ =W W
1 2+ ⊆W W W

Further, we know that  can be generated from  
and 

VP ,U Vp
,U VP ; thus, 

, ,rank( ) rank( ) rank( )V U VP P P≤ + U V . 

According to the condition,  

,rank( )U VP v= − u

u

, 

and, as previously established,  

rank( )VP v= , 

which results in  

,rank( ) ( )U VP v v u≥ − − = . 

Note that the matrix  has u rows and, thus,  ,U VP

,rank( )U VP u≤ . 

It is concluded that  

,rank( )U VP u= . 

Now, we get 

1 ,

2 ,

dim( ) rank( ) ,
dim( ) rank( ) .

U V

U V

P u
P v

= =⎧⎪
⎨ = =⎪⎩

W
W u−

C

 

Thus,  

1 2dim( ) dim( ) dim( )= +W W W , 

which proves that 

 . 1 2= +�W W W

Since , we have C= +Y W
               .             (3) 1 2( ) C= + +�Y W W

Noting that  and , 
(3) means that all 2

# ,2mv=Y 1# ,2mu=W ( )
2# 2m v u−=W

mv values in  can be divided into 2Y m(v–u) 
(fixing each value in ) disjoint affine spaces 

, that is, 
2C′∈ +W

1 C′+W

2

1
C C

C
′∈ +

′= +∪
W

Y W . 

This property is surely maintained for those 2mv values after 
 passes the round key addition layer in the first round. Y
In total, the above analysis shows that, after these special 2mv 

plaintexts pass through the initial key whitening stage and the 
first round encryption, their corresponding 2mv intermediate 
states can be divided into 2m(v–u) disjoint affine spaces (each 
with 2u elements) containing u active words and (n–u) constant 

words, and the indices of these u active words form the set U. 
Remember that there exists an r-round integral distinguisher 

whose inputs possess the same active set U; thus, each affine 
space forms the inputs for the r-round u-th-order integral 
distinguisher. Since each u-th-order integral distinguisher 
implies some predictable components of the ciphertexts after r 
rounds, so are the ciphertexts for the v-th-order integral after 
(r+1) rounds. Thus, we get an (r+1)-round v-th-order integral 
distinguisher, which ends the proof.                     

Theorem 1 tells us that, given an r-round known basic 
integral of an SPN cipher, let U represent the active indices of 
inputs; then, if one can find a set V such that the rank condition 

,rank( ) # #U VP v u V= − = − U  is satisfied, then one will 
obtain an (r+1)-round extended higher-order integral whose 
active indices of the inputs form the set V. Note that such rank 
condition can be simply checked with the Gaussian 
elimination method, either manually or automatically. 

In the next two subsections, we will apply the criteria 
established in theorem 1 to the well-known block ciphers AES 
and ARIA, showing how to extend basic integral distinguishers 
to higher-order integral distinguishers. Note that when 
discussing integral distinguishers for these two example SPN 
ciphers, their last round function does not omit the diffusion layer. 

3. Application to AES 

According to [1], [13], there exists a 4-round 4th-order 
integral of AES. In the following, we characterize the existence 
of these higher-order integrals by checking the rank of the 
submatrix chosen from the matrix P of the linear 
transformation. 

According to [12], for all 1≤ i, j ≤16, there exists the 
following form of a 3-round 1st-order integral of AES: 

.i jA B→  

The matrix of the “linear transformation” of AES is 
2 0 0 0 0 3 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 2 0 0 0 0 3
3 0 0 0 0 1 0 0 0 0 1 0 0 0 0 2
0 0 0 1 2 0 0 0 0 3 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 2 0 0 0 0 3 0
0 0 0 3 1 0 

P =

0 0 0 1 0 0 0 0 2 0
0 0 0 2 3 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 2 0 0 0 0 3 0 0
0 0 3 0 0 0 0 1 1 0 0 0 0 2 0 0
0 0 2 0 0 0 0 3 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 2 3 0 0 0 0 1 0 0
0 3 0 0 0 0 1 0 0 0 0 1 2 0 0 0
0 2 0 0 0 0 3 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 2 0 0 0 0 3 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 2 3 0 0 0 

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. 
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Now, if we choose U= {1} and V= {1, 6, 11, 16}, then 
6, 7, 8, 9, 10, 11, 12, 13{ ,2, 3, 4, 5,U = 14, 15, 16} and the 

submatrix ,U VP  is thus 

,

1 2 3 1
1 1 2 3
3 1 1 2
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

U VP

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

= . 

Since 

( ),rank 3 4 1 # #U VP V= = − = − U , 

it is concluded that the 3-round integral 1 jA B→  can be 
extended to a 4-round higher-order integral: 

1,6,11,16 jA B → . 

From the definition of P, we can further find the following  
4-round higher-order integrals: 

2,7,12,13 ,jA B → 3,8,9,14 ,jA B →  and 4,5,10,15 jA B → . 

Remark 1. The 4-round 4th-order integral distinguisher can 
be intuitively obtained from the 3-round 1st-order integral 
distinguisher; hence, it seems unnecessary to use a large matrix 
P to check the rank condition. However, this simple deduction 
follows from the special structure of ShiftRows and 
MixColumns; it would not work for a more complex matrix P, 
for example, the one used in ARIA. In this case, the rank 
condition is very useful, as demonstrated below. 

4. Application to ARIA 

In this subsection, we apply the criterion to the 3/4-round 
ARIA. 

A. From 2-Round 1st-Order Integral to 3-Round 7th-Order 
Integral 

According to [7], for all 1≤ i, j ≤16, there exists a 2-round 
1st-order integral of ARIA of the following form: 

i jA B  → . 

The matrix of the linear transformation of ARIA is 

0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0  
0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1  
0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1  
1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0  
1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1  
 0 1 0 1 1 0 0 0 0 1 1 0 0 0

P =

 1 1  
1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0  
0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0  
1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1  
1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0  
0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1  
 0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0  
0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0  
1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0  
1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0  
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1 

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

Now, if we choose U= {9} and V= {1, 2, 5, 8, 11, 14, 16}, 
then {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16}U = and 
the submatrix ,U VP  is thus 

,

0 0 1 0 0 1 0
0 0 0 1 0 0 1
0 1 1 0 1 0 1
1 0 0 1 1 1 0
1 0 0 0 0 0 1
0 1 1 0 1 0 1
1 0 0 1 1 1 0
0 1 0 0 0 1 0
1 1 0 0 0 0 0
0 0 0 0 0 1 1
0 0 1 1 0 0 0
0 1 0 1 0 0 0
1 0 0 1 1 1 0
1 0 1 0 0 0 0
0 1 1 0 1 0 1

U VP =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

Since 

( ),rank 6 7 1 # #U VP V= = − = − U , 

it is concluded that the 2-round 1st-order integral 1 jA B →  
can be extended to a 3-round 7th-order integral: 

1,2,5,8,11,14,16 jA B → . 

With the rank condition (**), we can find many other     
3-round d-th-order integrals of ARIA based on the 2-round  
1st-order integrals. Our results show that d ≥ 7, and these    
3-round 7th-order integrals are listed in Table 1. 

Remark 2. These 3-round 7th-order integrals of ARIA are 
optimal under the hypothesis that these 3-round higher-order 
integrals are limited to be constructed from 2-round 1st-order 
integrals. However, they may not be optimal compared with 
other kinds of 3-round integrals found by other techniques. See 
the example in [15], where the inputs of 3-round integrals have 
only three active bytes. 
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Table 1. 3-round 7th-order integrals of ARIA. 

No. Active bytes index U Active bytes index V Balanced bytes index 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

9 
10 
5 
7 
15 
14 
4 
16 
13 
6 
8 
3 
12 
11 
2 
1 

{1, 2, 5, 8, 11, 14, 16} 
{1, 2, 6, 7, 12, 13, 15} 
{1, 3, 6, 9, 12, 15, 16} 
{1, 3, 8, 10, 11, 13, 14} 
{1, 4, 5, 6, 10, 12, 15} 
{1, 4, 7, 8, 9, 11, 14} 

{1, 6, 8, 11, 12, 14, 15} 
{2, 3, 5, 6, 9, 11, 16} 
{2, 3, 7, 8, 10, 12, 13} 
{2, 4, 5, 10, 11, 15, 16} 
{2, 4, 7, 9, 12, 13, 14} 
{2, 5, 7, 11, 12, 13, 16} 
{3, 4, 5, 8, 10, 13, 15} 
{3, 4, 6, 7, 9, 14, 16} 
{3, 6, 8, 9, 10, 13, 16} 
{4, 5, 7, 9, 10, 14, 15} 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16} 

 

Remark 3. These 3-round 7th-order integrals of ARIA can 
be further extended to many (16 in total) 4-round 15th-order 
integrals of the form { } jiA B→ , where{ }i = ,16{1,2, } { }i… − . 
Yet, as will be explained later, compared with the 4-round 12th-
order integrals, they are not optimal. 

B. From 3-Round 3rd Order Integral to 4-Round 12th-Order 
Integral 

According to [15], there exists the following form of a   
3-round 3rd-order integral of ARIA: 

 

9,11,14 10,12,13,15A B  → . 

Now, if we choose U= {9, 11, 14} and V= {1, 2, 3, 4, 5, 6, 7, 
8, 9, 11, 14, 16}, then {1,2,3,4,5,6,7,8,10,12,13,U =  

and the submatrix 15,16} ,U VP  is thus 

,

0 0 0 1 1 0 1 0 1 0 1 0
0 0 1 0 0 1 0 1 1 0 0 1
0 1 0 0 1 0 1 0 0 1 0 1
1 0 0 0 0 1 0 1 0 1 1 0
1 0 1 0 0 1 0 0 1 0 0 1
0 1 0 1 1 0 0 0 0 1 0 1
1 0 1 0 0 0 0 1 0 1 1 0
0 1 0 1 0 0 1 0 1 0 1 0
1 1 0 0 0 1

U VP =

 1 0 0 0 0 0
0 0 1 1 1 0 0 1 0 0 0 0
0 1 1 0 0 0 1 1 0 0 0 0
1 0 0 1 1 1 0 0 0 0 0 0
0 1 1 0 1 1 0 0 1 1 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

Since 

( ),rank 9 12 3 # #U VP V= = − = − U , 

it is concluded that the 3-round 3rd-order integral 
 can be extended to a 4-round 12th-order 

integral: 
9,11,14 10,12,13,15A B→

1,2,3,4,5,6,7,8,9,11,14,16 10,12,13,15A B  → . 

According to the definition of P and the 3-round integral 
distinguisher of ARIA in [15], we can find many 4-round 
higher-order integrals of ARIA, among which there exist 36 
12th-order integrals, as listed in Table 2. These 36 integral 
distinguishers contain the 24 4-round integral distinguishers 
found in [16].  

Remark 4. We point out that by testing the rank condition, 
these 4-round integrals of AES or ARIA cannot be further 
extended to 5-round integrals. 

IV. Application to Other Block Cipher Structures 

The authors in [17], [18] developed the “U-method” as an 
automated tool to find impossible differentials for various kinds 
of block cipher structures. They also pointed out that such a 
method can be converted to a tool for finding 1st-order 
integrals of block cipher structures.  

In this section, we show that by adopting the notation of the 
“encryption matrix” as introduced in [17], [18], we can apply 
our proposed criterion to find higher-order integrals of other 
block cipher structures. Currently, we do not list all possible 
results on various kinds of block cipher structures; we present 
only the cryptanalytic results of Nyberg’s generalized Feistel  
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Table 2. 4-round 12th-order integrals of ARIA. 

No. Active bytes index U Active bytes index V Balanced bytes index 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

{9, 11, 14} {9, 11, 16} {9, 14, 16} {11, 14, 16} 
{10, 12, 13} {10, 12, 15} {10, 13, 15} {12, 13, 15}

{5, 6, 15} {5, 6, 16} {5, 15, 16} {6, 15, 16} 
{6, 7, 9} {6, 7, 12} {6, 9, 12} {7, 9, 12} 

{5, 8, 10} {5, 8, 11} {5, 10, 11} {8, 10, 11} 
{7, 8, 13} {7, 8, 14} {7, 13, 14} {8, 13, 14} 
{3, 5, 10} {3, 5, 16} {3, 10, 16} {5, 10, 16} 

{2, 7, 9} {2, 7, 16} {2, 9, 16} {7, 9, 16} 
{4, 5, 9} {4, 5, 16} {4, 9, 16} {5, 9, 16} 
{3, 7, 9} {3, 7, 13} {3, 9, 13} {7, 9, 13} 

{2, 5, 10} {2, 5, 13} {2, 10, 13} {5, 10, 13} 
{4, 7, 10} {4, 7, 13} {4, 10, 13} {7, 10, 13} 
{1, 8, 10} {1, 8, 15} {1, 10, 15} {8, 10, 15} 
{3, 6, 10} {3, 6, 15} {3, 10, 15} {6, 10, 15} 

{4, 6, 9} {4, 6, 15} {4, 9, 15} {6, 9, 15} 
{1, 6, 9} {1, 6, 14} {1, 9, 14} {6, 9, 14} 
{3, 8, 9} {3, 8, 14} {3, 9, 14} {8, 9, 14} 

{4, 8, 10} {4, 8, 14} {4, 10, 14} {8, 10, 14} 
{3, 4, 9} {3, 4, 10} {3, 9, 10} {4, 9, 10} 

{1, 5, 11} {1, 5, 15} {1, 11, 15} {5, 11, 15} 
{2, 5, 12} {2, 5, 15} {2, 12, 15} {5, 12, 15} 
{4, 7, 12} {4, 7, 15} {4, 12, 15} {7, 12, 15} 
{1, 7, 12} {1, 7, 14} {1, 12, 14} {7, 12, 14} 
{2, 7, 11} {2, 7, 14} {2, 11, 14} {7, 11, 14} 
{4, 5, 11} {4, 5, 14} {4, 11, 14} {5, 11, 14} 

{2, 4, 5} {2, 4, 7} {2, 5, 7} {4, 5, 7} 
{1, 4, 14} {1, 4, 15} {1, 14, 15} {4, 14, 15} 
{1, 6, 11} {1, 6, 16} {1, 11, 16} {6, 11, 16} 
{3, 8, 11} {3, 8, 16} {3, 11, 16} {8, 11, 16} 
{2, 6, 12} {2, 6, 16} {2, 12, 16} {6, 12, 16} 
{1, 8, 12} {1, 8, 13} {1, 12, 13} {8, 12, 13} 
{3, 6, 12} {3, 6, 13} {3, 12, 13} {6, 12, 13} 
{2, 8, 11} {2, 8, 13} {2, 11, 13} {8, 11, 13} 
{2, 3, 13} {2, 3, 16} {2, 13, 16} {3, 13, 16} 

{ 1, 3, 6} {1, 3, 8} {1, 6, 8} {3, 6, 8} 
{1, 2, 11} {1, 2, 12} {1, 11, 12} {2, 11, 12} 

{1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 16} 
{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 15} 
{1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 15, 16} 
{1, 2, 3, 4, 5, 8, 10, 11, 13, 14, 15, 16} 
{1, 2, 3, 4, 6, 7, 9, 12, 13, 14, 15, 16} 
{1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14} 
{1, 2, 3, 5, 6, 7, 9, 11, 12, 13, 15, 16} 
{1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 16} 
{1, 2, 3, 5, 6, 8, 9, 11, 12, 14, 15, 16} 
{1, 2, 3, 5, 7, 8, 10, 11, 12, 13, 14, 16} 
{1, 2, 3, 6, 7, 8, 9, 10, 12, 13, 15, 16} 
{1, 2, 3, 6, 7, 8, 10, 11, 12, 13, 14, 15} 
{1, 2, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15} 
{1, 2, 4, 5, 6, 7, 10, 11, 12, 13, 15, 16} 
{1, 2, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16} 
{1, 2, 4, 5, 7, 8, 9, 10, 11, 14, 15, 16} 
{1, 2, 4, 5, 7, 8, 9, 11, 12, 13, 14, 16} 
{1, 2, 4, 6, 7, 8, 9, 11, 12, 13, 14, 15} 
{1, 2, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16} 
{1, 3, 4, 5, 6, 7, 9, 10, 12, 14, 15, 16} 
{1, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15, 16} 
{1, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15} 
{1, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15} 
{1, 3, 4, 6, 7, 8, 9, 10, 11, 13, 14, 16} 
{1, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 16} 

{1, 3, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16} 
{1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15} 
{2, 3, 4, 5, 6, 7, 9, 10, 11, 14, 15, 16} 
{2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16} 
{2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 15, 16} 
{2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15} 
{2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 15, 16} 
{2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16} 
{2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16} 

{2, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16} 
{3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16} 

{10, 12, 13, 15} 
{9, 11, 14, 16} 
{7, 8, 13, 14} 
{6, 7, 9, 12} 
{5, 8, 10, 11} 
{5, 6, 15, 16} 
{2, 6, 12, 16} 
{3, 8, 11, 16} 
{4, 7, 10, 13} 
{4, 6, 9, 15} 
{4, 5, 11, 14} 
{1, 8, 12, 13} 
{4, 7, 12, 15} 
{3, 8, 9, 14} 
{1, 5, 11, 15} 
{3, 6, 12, 13} 
{2, 7, 11, 14} 
{3, 5, 10, 16} 
{3, 4, 9, 10} 
{2, 8, 11, 13} 
{3, 6, 10, 15} 
{2, 7, 9, 16} 
{4, 8, 10, 14} 
{2, 5, 12, 15} 
{1, 6, 9, 14} 
{2, 4, 5, 7} 

{2, 3, 13, 16} 
{4, 5, 9, 16} 
{1, 8, 10, 15} 
{1, 7, 12, 14} 
{1, 6, 11, 16} 
{2, 5, 10, 13} 
{3, 7, 9, 13} 
{1, 4, 14, 15} 
{1, 3, 6, 8} 

{1, 2, 11, 12} 

 

network [19] and the generalized Feistel-nonlinear feedback 
shift register (GF-NLFSR) [20] as examples. 

The idea is to introduce a substitution layer and a diffusion 
layer for block cipher structures. The substitution layer is just 
an identity transformation, while the diffusion layer can adopt 
the encryption matrix. Once these two layers are introduced, 
we can apply the criterion to extend a basic integral to a higher-
order integral, as we do for SPN ciphers. 

Considering the definition of the encryption matrix for a 
block cipher structure introduced in [17], [18], assume a block 
cipher structure with round function F (or many different F’s) 
has n data subblocks, and the input and the output of a round 

are (X0, X1…, Xn-1) and (Y0, Y1…, Yn-1), respectively. We have 
the following definition: 

Definition 5 [17], [18]. For a block cipher structure, the n×n 
encryption matrix M is defined as follows. If Yj is affected by Xi 
(affected means Yj = Xi ⊕ b, where b is a certain value), the (i,j)-
entry of M is set to 1. In particular, if Yj is affected by F(Xi) or 
F−1(Xi), the (i,j)-entry of M is set to 1F instead of 1. If Yj is not 
affected by Xi, the (i,j)-entry of M is set to 0. 

A significant difference between the notation for the 
encryption matrix in this paper and that in [17], [18] is the 
definition of the multiplication of a vector and the matrix M.  

In [17], [18], a vector is treated as a row-vector, and the 
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Fig. 1. Nyberg’s generalized Feistel network with eight subblocks.

F1

F2

F3

F4

 
 
multiplication is thus defined by the product of a row-vector 
times the matrix M. However, using our approach, a vector is 
treated as a column-vector, and the multiplication is defined by 
the product of the matrix M times a column-vector. This 
difference leads to the fact that the encryption matrix of a block 
cipher structure in this paper is the transpose of the 
corresponding matrix in [17], [18]. 

The definition of the rank for such an encryption matrix is 
important. Note that there are three kinds of elements in the 
encryption matrix: 0, 1, and 1F. In fact, as the definition of 
multiplication between a vector and a matrix, we can treat 0 
and 1 as the traditional values, while treating the element 1F as 
a non-zero and non-one value. Meanwhile, for different round 
functions F, the value 1F should be different. According to the 
above convention, the rank of an encryption matrix can be 
defined as the traditional rank is defined. 

1. Analysis of Nyberg’s Generalized Feistel Network 

A generalized Feistel network was proposed by Nyberg in 
[19], and it could provide provable security against differential 
and linear cryptanalysis. An evaluation of the security of this 
structure with eight subblocks against integral cryptanalysis [1] 
claims the existence of a 15-round 6th-order integral (the 
concrete distinguisher is not given). In this subsection, we 
show how to use our proposed criterion to construct the    
15-round 6th-order integral. 

The encryption procedure of Nyberg’s generalized Feistel 
network structure with eight subblocks is described in Fig. 1, 
and the encryption matrix is 

4

3

  0    0    0    0    0        0        0        1
  1    0    0    0    0        0        0        1

  0    1    0    0    0        0        1   0 

  0    0    1    

F

F

P

        
        

           

     
= 2

1

0    0        1   0        0

  0    0    0    1    1   0        0        0 

  0    0    0    0    1        0        0        0
  0    0    0    0    0        1       

F

F

      

            

         
         0        0

  0    0    0    0    0        0        1        0 

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜ ⎟
⎜  ⎜
⎜          ⎝

 

Fig. 2. GF-NLFSR structure with eight subblocks. 

F

 
 

Let us consider the 13-round 2nd-order integral of the 
form 1,8 1A B→ , as shown in [1]. Now, choose U= {1, 8} and 
V= {1, 2, 7, 8}; then, the submatrix is 

4

3

,

 1  0   0     1  

  0  1   1    0

  0  0   0       0
 0  0   0       0 
 0  0   0       0 
 0  0   0       0  

F

F

U VP

       ⎛ ⎞
⎜ ⎟

       ⎜ ⎟
⎜ ⎟

      ⎜ ⎟=
⎜ ⎟      
⎜ ⎟

      ⎜ ⎟
⎜ ⎟      ⎝ ⎠

. 

Since ,rank( ) 2 4 2 # # ,U VP = = − = −V U we get a 14-round 
4th-order integral of the form 1,2,7,8 1A B  → . 

Based on the above 14-round 4th-order integral, let us further 
choose U= {1, 2, 7, 8} and V= {1, 2, 3, 6, 7, 8}; then, we will 
obtain the submatrix 

3

2
,

 0  1  0  0 1   0 

 0  0  1  1  0    0 

 0  0  0  0    0    0 
 0  0  0  0    0    0 

F

F
U VP

          ⎛ ⎞
⎜ ⎟

       ⎜ ⎟= ⎜ ⎟
       ⎜ ⎟

⎜ ⎟       ⎝ ⎠

. 

The fact that ,rank( ) 2 6 4 # #U VP V= = − = − U explains 
why there exists a 15-round 6th-order integral of the 
form 1,2,3,6,7,8 1A B → . 

2. Analysis of GF-NLFSR 

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎟
⎟
⎟
⎠

. 

The GF-NLFSR structure was proposed by Choy and others 
in [20]. Similar to Nyberg’s generalized Feistel network, it can 
provide provable security against differential and linear 
cryptanalysis. The security of the GF-NLFSR containing n 
subblocks against integral cryptanalysis was carefully studied 
in [21], which presents an n2-round 1st-order integral and 
further an (n2+n–2)-round (n–1)th-order integral. In this 
subsection, we consider the GF-NLFSR with eight subblocks 
as an example and show how the first-order integral of the  
GF-NLFSR can be easily extended to higher-order integrals by 
using theorem 1.  

The encryption procedure of the GF-NLFSR with eight 
subblocks is described in Fig. 2, and the encryption matrix is 
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  0   1  0  0  0  0  0  0 
  0   0  1  0  0  0  0  0 
  0   0  0  1  0  0  0  0 
  0   0  0  0  1  0  0  0 
  0   0  0  0  0  1  0  0 
  0   0  0  0  0  0  1  0 
  0   0  0  0  0  0  0  1 
1   1  1F

P

 
 
 
 

=
 
 
 

   1  1  1  1  1 

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

From [21], there exists a 64-round 1st-order integral of the 
form , where  means that the 
XOR sum of the eight words of the ciphertexts is active. 

1 1 2A A  ⊕ ⊕…⊕→ 8 1 2 8A ⊕ ⊕…⊕

According to the encryption matrix P, for any 1 ≤ d ≤ 6, let 
U= {1, 2, …, d} and V= {1, 2, …, d, d+1}, and we can then 
prove ,rank( ) 1 1U VP d= = + − d

⊕

. This observation shows 
that the above 64-round 1st-order integral can be iterated to 
construct a (64+d)-round (d+1)th-order integral. Thus, at last, 
we get the 70-round 7th-order integral: 

1,2, ,7 1 2 8A B …  ⊕ ⊕…→ , 

where  means that the XOR sum of the eight 
words of the ciphertexts is balanced. 

1 2 8B ⊕ ⊕…⊕

V. Conclusion 

In this paper, we built a link between integrals and higher-
order integrals of SPN ciphers. We showed that if the matrix of 
the linear transformation in the diffusion layer satisfies a rank 
condition that implies a direct decomposition of a linear space, 
then an r-round (basic) integral can be extended to an (r+1)-
round higher-order integral. This proposed criterion unifies the 
procedure for finding 4-round higher-order integrals of the 
AES and ARIA. Additionally, it is suitable for detecting higher-
order integrals of other block cipher structures. We hope that 
the criterion presented in this paper will benefit the 
cryptanalysts, and may thus lead to better cryptanalytic results. 
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