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The higher-order integro differential equations arise in mathematical, applied and 
engineering sciences, astrophysics, solid state physics, astronomy, fluid dynamics, beam 
theory, fiber optics and chemical reaction-diffusion models; see [1, 2, 5, 12, 13, 28] and the 
references therein. Several techniques including decomposition and variational iteration 
have been used to investigate these problems [1, 2, 5, 12, 13, 28]. He [6-12] developed the 
homotopy perturbation technique based on the introduction of a homotopy, artificial or 
Book-keeping parameter for the solution of algebraic and ordinary differential equations. 
Such a technique is based on the expansion of the dependent variables and, in some cases, 
even constants that may appear in the governing equation, and provides series solutions. 
The technique has been applied with great success to obtain the solution of a large variety of 
nonlinear problems, see [4-12, 13-24] and the references therein. Although when it appeared, 
the homotopy perturbation method was believed to be a new technique, such a method has 
been previously used in, for example, numerical analysis and continuation algorithms 
whereby a parameter is introduced and increased from a value for which the problem to be 
solved has an easily obtainable solution, to its true valuable. In a later work Ghorbani et. al. 
[3, 4] split the nonlinear term into a series of polynomials calling them as the He’s 
polynomials. The He’s polynomials are calculated by using homotopy perturbation method, 
easier to calculate and are compatible with the Adomian’s polynomials. The basic 
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ABSTRACT. In this paper, we use He's polynomials for solving higher order integro differential 
equations (IDES) by converting them to an equivalent system of integral equations. The He's 
polynomials which are easier to calculate and are compatible to Adomian's polynomials are found 
by using homotopy perturbation method. The analytical results of the equations have been obtained 
in terms of convergent series with easily computable components. Several examples are given to 
verify the reliability and efficiency of the proposed method. 

1. INTRODUCTION 
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motivation of this paper is to use He’s polynomials (which are calculated by homotopy 
perturbation method) for solving higher order integro differential equations by converting  
them into a system of integral equations. It is shown that the higher-order integro-
differential equations are equivalent to the system of integral equations by using a suitable 
transformation. This alternate transformation plays a pivotal and fundamental role in solving 
the higher-order integro-differential equations. The He’s polynomials [3, 4, 19-26] are 
introduced and used in the equivalent system of integral equations. Several examples are 
given to illustrate the performance of the method.  

2. HOMOTOPY PERTURBATION METHOD 

To explain the homotopy perturbation method, we consider a general equation of the type, 
        (1) 

where L is any integral or differential operator. We define a convex homotopy H (u, p) by 
,0)( =uL

  ),()()1(),( upLuFppuH +−=     (2) 
where F (u) is a functional operator with known solutions v0, which can be obtained easily. 
It is clear that, for 

         (3) 
we have 

,0),( =puH

   ),()0,( uFuH = ).()1,( uLuH =  
This shows that continuously traces an implicitly defined curve from a starting 

point H (v0, 0) to a solution function H (f, 1). The embedding parameter monotonically 
increases from zero to unit as the trivial problem F (u) = 0 is continuously deforms the 
original problem L (u) = 0. The embedding parameter p 

),( puH

∈(0, 1] can be considered as an 
expanding parameter [3, 4, 6-12, 15-26]. The homotopy perturbation method uses the 
homotopy parameter p as an expanding parameter [6-12] to obtain  

    (4) 

if p  1, then (4) corresponds to (2) and becomes the approximate solution of the form, 
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It is well known that series (5) is convergent for most of the cases and also the rate of 
convergence is dependent on L (u); see [5-10]. We assume that (5) has a unique solution. 
The comparisons of like powers of p give solutions of various orders. In sum, according to 
[3, 4], He’s HPM considers the solution, , of the homotopy equation in a series of )(xu p  
as follows: 
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  , 

where ’s are the so-called He’s polynomials [3, 4], which can be calculated by using the 
formula 
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3. NUMERICAL APPLICATIONS 

In this section, we first show that the higher order integro differential equations can be 
written in the form of a system of integral equations by using a suitable transformation. The 
He’s polynomials which are calculated by homotopy perturbation method are used for 
solving the reformulated system of integral equations.  

 
EXAMPLE 3.1 [27, 28] Consider the linear boundary value problem for the fourth-order 

integro differential equation 

   

with boundary conditions 
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  .2)1(,1)1(,1)0(,1)0( eyeyyy =′+==′=  

Using the transformation  ),(),(),( xz
dx
dfxf

dx
dqxq

dx
dy

===  the above boundary value 

problems can be transformed as: 
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with boundary conditions 
  .)0(,)0(,1)0(,1)0( BzAfqy ====  
The exact solution of the above boundary value problem is  
   .1)( xexxy +=
The above system of differential equations can be written as the following system of 

integral equations  
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where 
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Comparing the co-efficient of like powers of p 
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The series solution is given as  
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which is in full agreement with [28] where the same problem was solved by Adomian’s 
decomposition method. Imposing the boundary conditions at x = 1, we obtained 

  .000000151.3,999999953.1 == BA  
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TABLE 3.1 (ERROR ESTIMATES) 
x  Exact solution Series solution *Errors 

0.0 1.000000000 1.000000000 0.00000 
0.1 1.11105170920 1.1105170920 2.0 E-10 
0.2 1.2442805520 1.1.2442805510 6.09 E-10 
0.3 1.4049576420 1.4049576410 1.4 E-9 
0.4 1.5967298790 1.5967298780 1.2 E-9 
0.5 1.8243606360 1.8243606320 3.5 E-9 
0.6 2.0932712800 2.0932712780 2.0 E-9 
0.7 2.4096268950 2.4096268920 3.0 E-9 
0.8 2.7804327420 2.7804327410 1.0 E-9 
0.9 3.2136428000 3.2136427980 2.0E-9 
1.0 3.7182818280 3.7182818290 1.0E-9 

.* solutionSeriesionExactsolutError −=  
 
Table 3.1 exhibits the errors obtained by applying the homotopy perturbation method. 

Higher accuracy can be obtained by using some more terms of the series solution. 
 

FIGURE 3.1 

 
Example 3.2 [27, 28] Consider the nonlinear boundary value problem for the integro 

differential equation 

   

with boundary conditions 
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The exact solution of the above boundary value problem is  
   .)( xexy =

Using transformation ),(),(),( xz
dx
dfxf
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dx
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===  the above boundary value 

problems can be transformed as the following system of differential equations 
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with boundary conditions 
  .)0(,)0(,1)0(,1)0( BzAfqy ====  
The above system of differential equations can be written as the following system of 

integral equations  
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Applying the convex homotopy and using He’s polynomials  
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Comparing the co-efficient of like powers of p 
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The series solution is given by: 
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which is in full agreement with [28] where the same problem was solved by Adomian’s 
decomposition method. Imposing the boundary conditions at 1=x , we obtained 

  .010994057.1,9970859583.0 == BA  
The series solution is given as 

  

.10166240474747.0101384676012.0
103522271752.050100000244628.0

64530000257805.06410001995690.0
!6

1
!5

1
!4

11684990095.04985429792.01)(

127116

1069

87

65432

L+×+×−

×++

++

++++++=

−−

−

xx
xx

xx

xxxxxxxy

 

 
TABLE 3.2 (ERROR ESTIMATES) 

x  Exact solution Series solution *Errors 
0.0 1.000000000 1.000000000 0.00000 
0.1 1.1051581800 1.1051581800 1.27 E-5 
0.2 1.2214027580 1.2213591310 4.36 E-5 
0.3 1.3498588080 1.3497770620 8.17 E-5 
0.4 1.4918246980 1.4917081990 1.16 E-4 
0.5 1.6487212710 1.6485829960 1.38 E-4 
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0.6 1.8221188000 1.8219791520 1.39 E-4 
0.7 2.0137527070 2.0136354170 1.17E-4 
0.8 2.2255409280 2.2254662080 7.47 E-5 
0.9 2.4596031110 2.4595771740 2.59 E-5 
1.0 2.7182818280 2.7182818280 0.000000 

.* solutionSeriesionExactsolutError −=  
 
Table 3.2 exhibits the errors obtained by applying the homotopy perturbation method. 

Higher accuracy can be obtained by using some more terms of the series solution. 
 

FIGURE 3.2 

 
 
EXAMPLE 3.3 [27, 28, 29] Consider the nonlinear inhomogeneous initial boundary value 

problem for the integro differential equation related to the Blasius problem 
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Using the transformation ),(xq
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Applying the convex homotopy method and using He’s polynomials 
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Comparing the co-efficient of like powers of p  
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The series solution is given as: 
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and consequently 
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are obtained which is in full agreement with [28] where the same problem was solved by 
Adomian’s decomposition method. Now, we use diagonal pade approximants to determine a 
numerical value for the constant α  by using the given condition [27, 28].  

 
TABLE 3.3 PADE APPROXIMANTS AND NUMERICAL VALUE OF α  [27, 28]. 

Pade approximant x 
[2/2] 0.5778502691 
[3/3] 0.5163977793 
[4/4] 0.5227030798 

 

4. CONCLUSION 

In this paper, we used He’s polynomials which are calculated by the homotopy 
perturbation method for finding the solution of higher order integro differential equations. 
The method is used in a direct way without using linearization, discritization or restrictive 
assumption. It may be concluded that the method is very powerful and efficient in finding 
the analytical solutions for wide class of boundary value problems. The method gives more 
realistic series solutions that converge very rapidly in physical problems. It is concluded that 
He’s polynomials are easier to calculate and are compatible to Adomian’s polynomials. 
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