• Title/Summary/Keyword: High-throughput Sequencing

Search Result 220, Processing Time 0.025 seconds

Xeroderma pigmentosum group A with mutational hot spot (c.390-1G>C in XPA ) in South Korea

  • Choi, Jung Yoon;Yun, Hyung Ho;Lee, Cha Gon
    • Journal of Genetic Medicine
    • /
    • v.13 no.1
    • /
    • pp.20-25
    • /
    • 2016
  • Purpose: Xeroderma pigmentosum (XP) is rare autosomal recessive genetic disorder of DNA repair in which the ability to repair damage caused by ultraviolet light is deficient. We reported the first molecularly confirmed Korean patient of XP by targeted exome sequencing. The prevalence of XP included all subtype and carrier frequency of XP-A the using public data were estimated for the first time in South Korea. Materials and Methods: We described a 4-year-old Korean girl with clinical diagnosis of XP. We performed targeted exome sequencing in the patient for genetic confirmation considering disease genetic heterogeneity and for differential diagnosis. We verified a carrier frequency of c.390-1G>C in XPA gene known as mutational hot spot using Korean Reference Genome Data Base. We estimated the period prevalence of all subtypes of XP based on claims data of the Health Insurance Review and Assessment Service in South Korea. Results: We identified homozygous splicing mutation of XPA (c.390-1G>C) in the patient. The carrier frequency of risk for XPA (c.390-1G>C) was relatively high 1.608 e-03 (allele count 2/1244). The prevalence of XP in South Korea was 0.3 per million people. Conclusion: We expect that c.390-1G>C is hot spot for the mutation of XPA and possible founder variant in South Korea. However, the prevalence in South Korea was extremely low compared with Western countries and Japan.

Screening and functional validation of lipid metabolism-related lncRNA-46546 based on the transcriptome analysis of early embryonic muscle tissue in chicken

  • Ruonan, Chen;Kai, Liao;Herong, Liao;Li, Zhang;Haixuan, Zhao;Jie, Sun
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.175-190
    • /
    • 2023
  • Objective: The study was conducted to screen differentially expressed long noncoding RNA (lncRNA) in chickens by high-throughput sequencing and explore its mechanism of action on intramuscular fat deposition. Methods: Herein, Rose crown and Cbb broiler chicken embryo breast and leg muscle lncRNA and mRNA expression profiles were constructed by RNA sequencing. A total of 96 and 42 differentially expressed lncRNAs were obtained in Rose crown vs Cobb broiler chicken breast and leg muscle, respectively. lncRNA-ENSGALT00000046546, with high interspecific variability and a potential regulatory role in lipid metabolism, and its predicted downstream target gene 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), were selected for further study on the preadipocytes. Results: lncRNA-46546 overexpression in chicken preadipocyte 2 cells significantly increased (p<0.01) the expression levels of AGPAT2 and its downstream genes diacylglycerol acyltransferase 1 and diacylglycerol acyltransferase 2 and those of the fat metabolism-related genes peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding protein α, fatty acid synthase, sterol regulatory element-binding transcription factor 1, and fatty acid binding protein 4. The lipid droplet concentration was higher in the overexpression group than in the control cells, and the triglyceride content in cells and medium was also significantly increased (p<0.01). Conclusion: This study preliminarily concludes that lncRNA-46546 may promote intramuscular fat deposition in chickens, laying a foundation for the study of lncRNAs in chicken early embryonic development and fat deposition.

Rumen bacteria influence milk protein yield of yak grazing on the Qinghai-Tibet plateau

  • Fan, Qingshan;Wanapat, Metha;Hou, Fujiang
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1466-1478
    • /
    • 2021
  • Objective: Ruminants are completely dependent on their microbiota for rumen fermentation, feed digestion, and consequently, their metabolism for productivity. This study aimed to evaluate the rumen bacteria of lactating yaks with different milk protein yields, using high-throughput sequencing technology, in order to understand the influence of these bacteria on milk production. Methods: Yaks with similar high milk protein yield (high milk yield and high milk protein content, HH; n = 12) and low milk protein yield (low milk yield and low milk protein content, LL; n = 12) were randomly selected from 57 mid-lactation yaks. Ruminal contents were collected using an oral stomach tube from the 24 yaks selected. High-throughput sequencing of bacterial 16S rRNA gene was used. Results: Ruminal ammonia N, total volatile fatty acids, acetate, propionate, and isobutyrate concentrations were found to be higher in HH than LL yaks. Community richness (Chao 1 index) and diversity indices (Shannon index) of rumen microbiota were higher in LL than HH yaks. Relative abundances of the Bacteroidetes and Tenericutes phyla in the rumen fluid were significantly increased in HH than LL yaks, but significantly decreased for Firmicutes. Relative abundances of the Succiniclasticum, Butyrivibrio 2, Prevotella 1, and Prevotellaceae UCG-001 genera in the rumen fluid of HH yaks was significantly increased, but significantly decreased for Christensenellaceae R-7 group and Coprococcus 1. Principal coordinates analysis on unweighted UniFrac distances revealed that the bacterial community structure of rumen differed between yaks with high and low milk protein yields. Furthermore, rumen microbiota were functionally enriched in relation to transporters, ABC transporters, ribosome, and urine metabolism, and also significantly altered in HH and LL yaks. Conclusion: We observed significant differences in the composition, diversity, fermentation product concentrations, and function of ruminal microorganisms between yaks with high and low milk protein yields, suggesting the potential influence of rumen microbiota on milk protein yield in yaks. A deeper understanding of this process may allow future modulation of the rumen microbiome for improved agricultural yield through bacterial community design.

Advances towards Controlling Meiotic Recombination for Plant Breeding

  • Choi, Kyuha
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.814-822
    • /
    • 2017
  • Meiotic homologous recombination generates new combinations of preexisting genetic variation and is a crucial process in plant breeding. Within the last decade, our understanding of plant meiotic recombination and genome diversity has advanced considerably. Innovation in DNA sequencing technology has led to the exploration of high-resolution genetic and epigenetic information in plant genomes, which has helped to accelerate plant breeding practices via high-throughput genotyping, and linkage and association mapping. In addition, great advances toward understanding the genetic and epigenetic control mechanisms of meiotic recombination have enabled the expansion of breeding programs and the unlocking of genetic diversity that can be used for crop improvement. This review highlights the recent literature on plant meiotic recombination and discusses the translation of this knowledge to the manipulation of meiotic recombination frequency and location with regards to crop plant breeding.

An Advanced Understanding of Uterine Microbial Ecology Associated with Metritis in Dairy Cows

  • Jeon, Soo Jin;Galvao, Klibs N.
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.21.1-21.7
    • /
    • 2018
  • Metritis, the inflammation of the uterus caused by polymicrobial infections, is a prevalent and costly disease to the dairy industry as it decreases milk yield, survival, and the welfare of dairy cows. Although affected cows are treated with broad-spectrum antibiotics such as ceftiofur, endometrial and ovarian function are not fully recovered, which results in subfertility and infertility. According to culture-dependent studies, uterine pathogens include Escherichia coli, Trueperella pyogenes, Fusobacterium necrophorum, and Prevotella melaninogenica. Recent studies using high-throughput sequencing observed very low relative abundance of Escherichia coli, Trueperella pyogenes, and Prevotella melaninogenica in cows with metritis. Herein, we propose that metritis is associated with a dysbiosis of the uterine microbiota, which is characterized by high abundance of Bacteroides, Porphyromonas, and Fusobacterium.

Statistical analysis of metagenomics data

  • Calle, M. Luz
    • Genomics & Informatics
    • /
    • v.17 no.1
    • /
    • pp.6.1-6.9
    • /
    • 2019
  • Understanding the role of the microbiome in human health and how it can be modulated is becoming increasingly relevant for preventive medicine and for the medical management of chronic diseases. The development of high-throughput sequencing technologies has boosted microbiome research through the study of microbial genomes and allowing a more precise quantification of microbiome abundances and function. Microbiome data analysis is challenging because it involves high-dimensional structured multivariate sparse data and because of its compositional nature. In this review we outline some of the procedures that are most commonly used for microbiome analysis and that are implemented in R packages. We place particular emphasis on the compositional structure of microbiome data. We describe the principles of compositional data analysis and distinguish between standard methods and those that fit into compositional data analysis.

HiCORE: Hi-C Analysis for Identification of Core Chromatin Looping Regions with Higher Resolution

  • Lee, Hongwoo;Seo, Pil Joon
    • Molecules and Cells
    • /
    • v.44 no.12
    • /
    • pp.883-892
    • /
    • 2021
  • Genome-wide chromosome conformation capture (3C)-based high-throughput sequencing (Hi-C) has enabled identification of genome-wide chromatin loops. Because the Hi-C map with restriction fragment resolution is intrinsically associated with sparsity and stochastic noise, Hi-C data are usually binned at particular intervals; however, the binning method has limited reliability, especially at high resolution. Here, we describe a new method called HiCORE, which provides simple pipelines and algorithms to overcome the limitations of single-layered binning and predict core chromatin regions with three-dimensional physical interactions. In this approach, multiple layers of binning with slightly shifted genome coverage are generated, and interacting bins at each layer are integrated to infer narrower regions of chromatin interactions. HiCORE predicts chromatin looping regions with higher resolution, both in human and Arabidopsis genomes, and contributes to the identification of the precise positions of potential genomic elements in an unbiased manner.

The peduncle-specific expression during floral transition by high-throughput transcriptome analysis in wheat

  • Lee, Cheol Won;Seo, Yong Weo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.87-87
    • /
    • 2017
  • Flowering time of either early or late is one of the crucial parameters that determine the crop productivity. Therefore, elucidation of regulatory mechanisms of flowering time should contribute to breeding for yield enhancement. However, comprehensive explanation on molecular mechanism of flowering has not yet been reported in hexaploidy common wheat (Triticum asetivum L.). The mechanism of flowering in wheat has been studied mostly using flag leaf or floral meristem. The exposed peduncle, which is a shoot part between bottom of the spike and flag leaf, could be an important tissue that is responsible for flowering through various molecules expressing. To clarify for transcriptomic dynamics in the wheat peduncle that was uncovered by leaf sheath of flag leaf, RNA sequencing and transcriptomic analysis were conducted. With this, we also analyzed other transcriptomic results deposited in the public DB to identify genes specially expressed in peduncle tissue at transition from vegetative to reproductive phase. The obtained results will provide valuable information to understand the role of peduncle for flowing regulation in wheat aimming for elucidation of the regulatory mechanism of wheat flowering.

  • PDF

TRAPR: R Package for Statistical Analysis and Visualization of RNA-Seq Data

  • Lim, Jae Hyun;Lee, Soo Youn;Kim, Ju Han
    • Genomics & Informatics
    • /
    • v.15 no.1
    • /
    • pp.51-53
    • /
    • 2017
  • High-throughput transcriptome sequencing, also known as RNA sequencing (RNA-Seq), is a standard technology for measuring gene expression with unprecedented accuracy. Numerous bioconductor packages have been developed for the statistical analysis of RNA-Seq data. However, these tools focus on specific aspects of the data analysis pipeline, and are difficult to appropriately integrate with one another due to their disparate data structures and processing methods. They also lack visualization methods to confirm the integrity of the data and the process. In this paper, we propose an R-based RNA-Seq analysis pipeline called TRAPR, an integrated tool that facilitates the statistical analysis and visualization of RNA-Seq expression data. TRAPR provides various functions for data management, the filtering of low-quality data, normalization, transformation, statistical analysis, data visualization, and result visualization that allow researchers to build customized analysis pipelines.

Till 2018: a survey of biomolecular sequences in genus Panax

  • Boopathi, Vinothini;Subramaniyam, Sathiyamoorthy;Mathiyalagan, Ramya;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.33-43
    • /
    • 2020
  • Ginseng is popularly known to be the king of ancient medicines and is used widely in most of the traditional medicinal compositions due to its various pharmaceutical properties. Numerous studies are being focused on this plant's curative effects to discover their potential health benefits in most human diseases, including cancer- the most life-threatening disease worldwide. Modern pharmacological research has focused mainly on ginsenosides, the major bioactive compounds of ginseng, because of their multiple therapeutic applications. Various issues on ginseng plant development, physiological processes, and agricultural issues have also been studied widely through state-of-the-art, high-throughput sequencing technologies. Since the beginning of the 21st century, the number of publications on ginseng has rapidly increased, with a recent count of more than 6,000 articles and reviews focusing notably on ginseng. Owing to the implementation of various technologies and continuous efforts, the ginseng plant genomes have been decoded effectively in recent years. Therefore, this review focuses mainly on the cellular biomolecular sequences in ginseng plants from the perspective of the central molecular dogma, with an emphasis on genomes, transcriptomes, and proteomes, together with a few other related studies.