1 |
McCabe MS, Cormican P, Keogh K, et al. Illumina MiSeq phylogenetic amplicon sequencing shows a large reduction of an uncharacterised Succinivibrionaceae and an increase of the Methanobrevibacter gottschalkii Clade in feed restricted cattle. PLoS One 2015;10:e0133234. https://doi.org/10.1371/journal.pone.0133234
DOI
|
2 |
Lima FS, Oikonomou G, Lima SF, et al. Prepartum and post-partum rumen fluid microbiomes: characterization and correlation with production traits in dairy cows. Appl Environ Microbiol 2015;81:1327-37. https://doi.org/10.1128/AEM.03138-14
DOI
|
3 |
Jami E, White BA, Mizrahi I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PLoS One 2014;9:e85423. https://doi.org/10.1371/journal.pone.0085423
DOI
|
4 |
Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 1990;70:567-90. https://doi.org/10.1152/physrev.1990.70.2.567
DOI
|
5 |
Hackmann TJ, Firkins JL. Maximizing efficiency of rumen microbial protein production. Front Microbiol 2015;6:465. https://doi.org/10.3389/fmicb.2015.00465
DOI
|
6 |
Hurtaud C, Rulquin H, Verite R. Effect of infused volatile fatty acids and caseinate on milk composition and coagulation in dairy cows. J Dairy Sci 1993;76:3011-20. https://doi.org/10.3168/jds.S0022-0302(93)77640-7
DOI
|
7 |
Pope PB, Smith W, Denman SE, et al. Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science 2011;333:646-8. https://doi.org/10.1126/science.1205760
DOI
|
8 |
Liu H, Zhao K, Liu J. Effects of glucose availability on expression of the key genes involved in synthesis of milk fat, lactose and glucose metabolism in bovine mammary epithelial cells. PLoS One 2013;8:e66092. https://doi.org/10.1371/journal.pone.0066092
DOI
|
9 |
Martin R, Nauta AJ, Ben Amor K, Knippels LMJ, Knol J, Garssen J. Early life: gut microbiota and immune development in infancy. Benef Microbes 2010;1:367-82. https://doi.org/10.3920/BM2010.0027
DOI
|
10 |
Shi W, Moon CD, Leahy SC, et al. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res 2014;24:1517-25. https://doi.org/10.1101/gr.168245.113
DOI
|
11 |
Zeng SZ, Huang ZJ, Hou DW, Liu J, Weng SP, He JG. Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei) at different culture stages. Peer J 2017;5:e3986. https://doi.org/10.7717/peerj.3986
DOI
|
12 |
Hamana K, Itoh T, Sakamoto M, Hayashi H. Covalently linked polyamines in the cell wall peptidoglycan of the anaerobes belonging to the order Selenomonadales. J Gen Appl Microbiol 2012;58:339-47. https://doi.org/10.2323/jgam.58.339
DOI
|
13 |
Fernando SC, Purvis HTI, Najar FZ, et al. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl Environ Microbiol 2010;76:7482-90. https://doi.org/10.1128/AEM.00388-10
DOI
|
14 |
Kiddy CA. A review of research on genetic variation in physiological characteristics related to performance in dairy cattle. J Dairy Sci 1979;62:818-24. https://doi.org/10.3168/jds.S0022-0302(79)83333-0
DOI
|
15 |
Kamke J, Kittelmann S, Soni P, et al. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Microbiome 2016;4:56. https://doi.org/10.1186/s40168-016-0201-2
DOI
|
16 |
Magoc T, Salzberg SL. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011;27:2957-63. https://doi.org/10.1093/bioinformatics/btr507
DOI
|
17 |
Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335-6. https://doi.org/10.1038/nmeth.f.303
DOI
|
18 |
Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat Methods 2013;10:996-8. https://doi.org/10.1038/nmeth.2604
DOI
|
19 |
Lozupone C, Knight R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 2005;71:8228-35. https://doi.org/10.1128/AEM.71.12.8228-8235.2005
DOI
|
20 |
Asshauer KP, Wemheuer B, Daniel R, Meinicke P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 2015;31:2882-4. https://doi.org/10.1093/bioinformatics/btv287
DOI
|
21 |
Arndt C, Powell JM, Aguerre MJ, Crump PM, Wattiaux MA. Feed conversion efficiency in dairy cows: Repeatability, variation in digestion and metabolism of energy and nitrogen, and ruminal methanogens. J Dairy Sci 2015;98:3938-50. https://doi.org/10.3168/jds.2014-8449
DOI
|
22 |
Xue D, Chen H, Zhao X, et al. Rumen prokaryotic communities of ruminants under different feeding paradigms on the Qinghai-Tibetan Plateau. Syst Appl Microbiol 2017;40:227-36. https://doi.org/10.1016/j.syapm.2017.03.006
DOI
|
23 |
Li F, Guan LL. Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Appl Environ Microbiol 2017;83:e00061-17. https://doi.org/10.1128/AEM.00061-17
DOI
|
24 |
Grant RJ, Albright JL. Feeding behavior and management factors during the transition period in dairy cattle. J Anim Sci 1995;73:2791-803. https://doi.org/10.2527/1995.7392791x
DOI
|
25 |
Bickhart DM, Weimer PJ. Symposium review: host-rumen microbe interactions may be leveraged to improve the productivity of dairy cows. J Dairy Sci 2018;101:7680-9. https://doi.org/10.3168/jds.2017-13328
DOI
|
26 |
Pryce JE, Arias J, Bowman PJ, et al. Accuracy of genomic predictions of residual feed intake and 250-day body weight in growing heifers using 625,000 single nucleotide polymorphism markers. J Dairy Sci 2012;95:2108-19. https://doi.org/10.3168/jds.2011-4628
DOI
|
27 |
VandeHaar MJ, Armentano LE, Weigel K, Spurlock DM, Tempelman RJ, Veerkamp R. Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency. J Dairy Sci 2016;99:4941-54. https://doi.org/10.3168/jds.2015-10352
DOI
|
28 |
Xue MY, Sun HZ, Wu XH, Liu JX, Guan LL. Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome 2020;8:64. https://doi.org/10.1186/s40168-020-00819-8
DOI
|
29 |
Morotomi M, Nagai F, Watanabe Y. Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov. Int J Syst Evol Microbiol 2012;62:144-9. https://doi.org/10.1099/ijs.0.026989-0
DOI
|
30 |
Purushe J, Fouts DE, Morrison M, et al. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microb Ecol 2010;60:721-9. https://doi.org/10.1007/s00248-010-9692-8
DOI
|
31 |
Power ME, Tilman D, Estes JA, et al. Challenges in the quest for keystones: identifying keystone species is difficult-but essential to understanding how loss of species will affect ecosystems. BioSci 1996;46:609-20. https://doi.org/10.2307/1312990
DOI
|
32 |
Indugu N, Vecchiarelli B, Baker LD, Ferguson JD, Vanamala JKP, Pitta DW. Comparison of rumen bacterial communities in dairy herds of different production. BMC Microbiol 2017;17:190. https://doi.org/10.1186/s12866-017-1098-z
DOI
|
33 |
Cunha CS, Veloso CM, Marcondes MI, et al. Assessing the impact of rumen microbial communities on methane emissions and production traits in Holstein cows in a tropical climate. Syst Appl Microbiol 2017;40:492-9. https://doi.org/10.1016/j.syapm.2017.07.008
DOI
|
34 |
Wallace RJ, Rooke JA, Mckain N, et al. The rumen microbial metagenome associated with high methane production in cattle. BMC Genomics 2015;16:839. https://doi.org/10.1186/s12864-015-2032-0
DOI
|
35 |
AOAC. Official methods of analysis of the Association of Official Analytical Chemists International (17th ed.). Gaithersburg, MD, USA: AOAC International; 2002.
|
36 |
Fan QS, Wanapat M, Hou FJ. Mineral nutritional status of yaks (Bos Grunniens) grazing on the Qinghai-Tibetan Plateau. Animals 2019;9:468. https://doi.org/10.3390/ani9070468
DOI
|
37 |
Fan Q, Wanapat M, Hou F. Chemical composition of milk and rumen microbiome diversity of yak, impacting by herbage grown at different phenological periods on the Qinghai-Tibet plateau. Animals 2020;10:1030. https://doi.org/10.3390/ani10061030
DOI
|
38 |
Xia W, Osorio JS, Yang YX, Liu DL, Jiang MF. Short communication: Characterization of gene expression profiles related to yak milk protein synthesis during the lactation cycle. J Dairy Sci 2018;101:11150-8. https://doi.org/10.3168/jds.2018-14715
DOI
|
39 |
National Food Safety Standard of China. Determination of lactose and sucrose in foods for infants and young children milk and milk products: GB 5413.21-2010. Beijing, China: Ministry of Health of the People's Republic of China; 2010.
|
40 |
Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583-97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
DOI
|
41 |
Xue MY, Sun HZ, Wu HX, Guan LL, Liu JX. Assessment of rumen bacteria in dairy cows with varied milk protein yield. J Dairy Sci 2019;102:5031-41. https://doi.org/10.3168/jds.2018-15974
DOI
|
42 |
Ma L, Xu SX, Liu HJ, et al. Yak rumen microbial diversity at different forage growth stages of an alpine meadow on the Qinghai-Tibet plateau. Peer J 2019;7:e7645. https://doi.org/10.7717/peerj.7645
DOI
|
43 |
Chaney AL, Marbach EP. Modified reagents for determination of urea and ammonia. Clin Chem 1962;8:130-2. https://doi.org/10.1093/clinchem/8.2.130
DOI
|
44 |
Shabat SKB, Sasson G, Doronfaigenboim A, et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J 2016;10:2958-72. https://doi.org/10.1038/ismej.2016.62
DOI
|
45 |
Hernandez-Sanabria E, Guan LL, Goonewardene LA, et al. Correlation of particular bacterial PCR-denaturing gradient gel electrophoresis patterns with bovine ruminal fermentation parameters and feed efficiency traits. Appl Environ Microbiol 2010;76:6338-50. https://doi.org/10.1128/AEM.01052-10
DOI
|
46 |
Yang CY, Zhang Y, Hou FJ, Millner JP, Wang ZF, Chang SH. Grazing activity increases decomposition of yak dung and litter in an alpine meadow on the Qinghai-Tibet plateau. Plant Soil 2019;444:239-50. https://doi.org/10.1007/s11104-019-04272-x
DOI
|
47 |
Baumgard LH, Collier RJ, Bauman DE. A 100-year review: regulation of nutrient partitioning to support lactation. J Dairy Sci 2017;100:10353-66. https://doi.org/10.3168/jds.2017-13242
DOI
|
48 |
Connor EE, Hutchison JL, Olson KM, Norman HD. Triennial Lactation Symposium: Opportunities for improving milk production efficiency in dairy cattle. J Anim Sci 2012;90:1687-94. https://doi.org/10.2527/jas.2011-4528
DOI
|
49 |
Liu C, Wu H, Liu SJ, Chai ST, Meng QX, Zhou ZM. Dynamic alterations in yak rumen bacteria community and metabolome characteristics in response to feed type. Front Microbiol 2019;10:1116. https://doi.org/10.3389/fmicb.2019.01116
DOI
|
50 |
Jewell KA, McCormick CA, Odt CL, Weimer PJ, Suen G. Ruminal bacterial community composition in dairy cows is dynamic over the course of multiple lactations and correlates with feed efficiency. Appl Environ Microbiol 2015;81:4697-710. https://doi.org/10.1128/AEM.00720-15
DOI
|
51 |
Dennis KL, Wang YW, Blatner NR, et al. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Cancer Res 2013;73:5905-13. https://doi.org/10.1158/0008-5472.CAN-13-1511
DOI
|
52 |
Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 2014;5:219. https://doi.org/10.3389/fmicb.2014.00219
DOI
|